Add MiniCPM-V-2 GPU example (#11699)
* Add MiniCPM-V-2 GPU example * add example in README.md * add example in README.md
This commit is contained in:
		
							parent
							
								
									8fb36b9f4a
								
							
						
					
					
						commit
						808d9a7bae
					
				
					 3 changed files with 313 additions and 0 deletions
				
			
		| 
						 | 
				
			
			@ -309,6 +309,8 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
			
		|||
| CodeGeeX2 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/codegeex2) | [link](python/llm/example/GPU/HuggingFace/LLM/codegeex2) |
 | 
			
		||||
| MiniCPM | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm) | [link](python/llm/example/GPU/HuggingFace/LLM/minicpm) |
 | 
			
		||||
| MiniCPM-V |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
 | 
			
		||||
| MiniCPM-V-2 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
			
		||||
| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
			
		||||
 | 
			
		||||
## Get Support
 | 
			
		||||
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,135 @@
 | 
			
		|||
# MiniCPM-V-2
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V-2 models on [Intel GPUs](../../../README.md). For illustration purposes, we utilize the [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2) as a reference MiniCPM-V-2 model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `chat()` API
 | 
			
		||||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V-2 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
			
		||||
### 1. Install
 | 
			
		||||
#### 1.1 Installation on Linux
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install timm peft
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 1.2 Installation on Windows
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11 libuv
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
			
		||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
			
		||||
 | 
			
		||||
pip install timm peft
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Configures OneAPI environment variables for Linux
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> Skip this step if you are running on Windows.
 | 
			
		||||
 | 
			
		||||
This is a required step on Linux for APT or offline installed oneAPI. Skip this step for PIP-installed oneAPI.
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 3. Runtime Configurations
 | 
			
		||||
For optimal performance, it is recommended to set several environment variables. Please check out the suggestions based on your device.
 | 
			
		||||
#### 3.1 Configurations for Linux
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics and Intel Data Center GPU Flex Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Data Center GPU Max Series</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export LD_PRELOAD=${LD_PRELOAD}:${CONDA_PREFIX}/lib/libtcmalloc.so
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export ENABLE_SDP_FUSION=1
 | 
			
		||||
```
 | 
			
		||||
> Note: Please note that `libtcmalloc.so` can be installed by `conda install -c conda-forge -y gperftools=2.10`.
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
export SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
#### 3.2 Configurations for Windows
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel iGPU</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
set BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
<details>
 | 
			
		||||
 | 
			
		||||
<summary>For Intel Arc™ A-Series Graphics</summary>
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
set SYCL_CACHE_PERSISTENT=1
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
</details>
 | 
			
		||||
 | 
			
		||||
> [!NOTE]
 | 
			
		||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
			
		||||
### 4. Running examples
 | 
			
		||||
 | 
			
		||||
```
 | 
			
		||||
python ./generate.py --prompt 'What is in the image?'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2 (e.g. `openbmb/MiniCPM-V-2`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2'`.
 | 
			
		||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
			
		||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
			
		||||
 | 
			
		||||
#### Sample Output
 | 
			
		||||
 | 
			
		||||
#### [openbmb/MiniCPM-V-2](https://huggingface.co/openbmb/MiniCPM-V-2)
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Input --------------------
 | 
			
		||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
			
		||||
-------------------- Prompt --------------------
 | 
			
		||||
What is in the image?
 | 
			
		||||
-------------------- Output --------------------
 | 
			
		||||
In the image, there is a young child holding a teddy bear. The teddy bear appears to be dressed in a pink tutu. The child is also wearing a red and white striped dress. The background of the image includes a stone wall and some red flowers.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
			
		||||
 | 
			
		||||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,176 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
from typing import List, Tuple, Optional, Union
 | 
			
		||||
import math
 | 
			
		||||
import timm
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
 | 
			
		||||
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
 | 
			
		||||
def resample_abs_pos_embed(
 | 
			
		||||
        posemb: torch.Tensor,
 | 
			
		||||
        new_size: List[int],
 | 
			
		||||
        old_size: Optional[List[int]] = None,
 | 
			
		||||
        num_prefix_tokens: int = 1,
 | 
			
		||||
        interpolation: str = 'bicubic',
 | 
			
		||||
        antialias: bool = True,
 | 
			
		||||
        verbose: bool = False,
 | 
			
		||||
):
 | 
			
		||||
    # sort out sizes, assume square if old size not provided
 | 
			
		||||
    num_pos_tokens = posemb.shape[1]
 | 
			
		||||
    num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
 | 
			
		||||
    if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
 | 
			
		||||
        return posemb
 | 
			
		||||
 | 
			
		||||
    if old_size is None:
 | 
			
		||||
        hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
 | 
			
		||||
        old_size = hw, hw
 | 
			
		||||
 | 
			
		||||
    if num_prefix_tokens:
 | 
			
		||||
        posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
 | 
			
		||||
    else:
 | 
			
		||||
        posemb_prefix, posemb = None, posemb
 | 
			
		||||
 | 
			
		||||
    # do the interpolation
 | 
			
		||||
    embed_dim = posemb.shape[-1]
 | 
			
		||||
    orig_dtype = posemb.dtype
 | 
			
		||||
    posemb = posemb.float()  # interpolate needs float32
 | 
			
		||||
    posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
 | 
			
		||||
    #posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
 | 
			
		||||
    posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
 | 
			
		||||
    posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
 | 
			
		||||
    posemb = posemb.to(orig_dtype)
 | 
			
		||||
 | 
			
		||||
    # add back extra (class, etc) prefix tokens
 | 
			
		||||
    if posemb_prefix is not None:
 | 
			
		||||
        posemb = torch.cat([posemb_prefix, posemb], dim=1)
 | 
			
		||||
 | 
			
		||||
    if not torch.jit.is_scripting() and verbose:
 | 
			
		||||
        _logger.info(f'Resized position embedding: {old_size} to {new_size}.')
 | 
			
		||||
 | 
			
		||||
    return posemb
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
 | 
			
		||||
    if self.pos_embed is None:
 | 
			
		||||
        return x.view(x.shape[0], -1, x.shape[-1])
 | 
			
		||||
 | 
			
		||||
    if self.dynamic_img_size:
 | 
			
		||||
        B, H, W, C = x.shape
 | 
			
		||||
        pos_embed = resample_abs_pos_embed(
 | 
			
		||||
            self.pos_embed,
 | 
			
		||||
            (H, W),
 | 
			
		||||
            num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
 | 
			
		||||
        )
 | 
			
		||||
        x = x.view(B, -1, C)
 | 
			
		||||
    else:
 | 
			
		||||
        pos_embed = self.pos_embed
 | 
			
		||||
 | 
			
		||||
    to_cat = []
 | 
			
		||||
    if self.cls_token is not None:
 | 
			
		||||
        to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
 | 
			
		||||
    if self.reg_token is not None:
 | 
			
		||||
        to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
 | 
			
		||||
 | 
			
		||||
    if self.no_embed_class:
 | 
			
		||||
        # deit-3, updated JAX (big vision)
 | 
			
		||||
        # position embedding does not overlap with class token, add then concat
 | 
			
		||||
        x = x + pos_embed
 | 
			
		||||
        if to_cat:
 | 
			
		||||
            x = torch.cat(to_cat + [x], dim=1)
 | 
			
		||||
    else:
 | 
			
		||||
        # original timm, JAX, and deit vit impl
 | 
			
		||||
        # pos_embed has entry for class token, concat then add
 | 
			
		||||
        if to_cat:
 | 
			
		||||
            x = torch.cat(to_cat + [x], dim=1)
 | 
			
		||||
        x = x + pos_embed
 | 
			
		||||
 | 
			
		||||
    return self.pos_drop(x)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import requests
 | 
			
		||||
from PIL import Image
 | 
			
		||||
from ipex_llm.transformers import AutoModel
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V-2 model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2",
 | 
			
		||||
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2 model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
			
		||||
                        help='Max tokens to predict')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    image_path = args.image_url_or_path
 | 
			
		||||
    
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
			
		||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
			
		||||
    model = AutoModel.from_pretrained(model_path, 
 | 
			
		||||
                                      load_in_low_bit="asym_int4",
 | 
			
		||||
                                      optimize_model=True,
 | 
			
		||||
                                      trust_remote_code=True,
 | 
			
		||||
                                      modules_to_not_convert=["vpm", "resampler", "lm_head"],
 | 
			
		||||
                                      use_cache=True)
 | 
			
		||||
    model = model.float().to(device='xpu')
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    model.eval()
 | 
			
		||||
 | 
			
		||||
    query = args.prompt
 | 
			
		||||
    if os.path.exists(image_path):
 | 
			
		||||
       image = Image.open(image_path).convert('RGB')
 | 
			
		||||
    else:
 | 
			
		||||
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2/blob/main/README.md
 | 
			
		||||
    msgs = [{'role': 'user', 'content': args.prompt}]
 | 
			
		||||
    st = time.time()
 | 
			
		||||
    res, context, _ = model.chat(
 | 
			
		||||
     image=image,
 | 
			
		||||
     msgs=msgs,
 | 
			
		||||
     context=None,
 | 
			
		||||
     tokenizer=tokenizer,
 | 
			
		||||
     sampling=False,
 | 
			
		||||
     temperature=0.7
 | 
			
		||||
    )
 | 
			
		||||
    end = time.time()
 | 
			
		||||
    print(f'Inference time: {end-st} s')
 | 
			
		||||
    print('-'*20, 'Input', '-'*20)
 | 
			
		||||
    print(image_path)
 | 
			
		||||
    print('-'*20, 'Prompt', '-'*20)
 | 
			
		||||
    print(args.prompt)
 | 
			
		||||
    output_str = res
 | 
			
		||||
    print('-'*20, 'Output', '-'*20)
 | 
			
		||||
    print(output_str)
 | 
			
		||||
		Loading…
	
		Reference in a new issue