Nano: update tensorflow examples (#6935)
This commit is contained in:
parent
56a2d8f1cd
commit
7e180d028e
1 changed files with 8 additions and 7 deletions
|
|
@ -19,10 +19,10 @@ By default, [Intel Neural Compressor](https://github.com/intel/neural-compressor
|
|||
pip install neural-compressor==1.11.0
|
||||
```
|
||||
|
||||
BigDL-Nano provides several APIs which can help users easily apply optimizations on inference pipelines to improve latency and throughput. The Keras Model(`bigdl.nano.tf.keras.Model`) and Sequential(`bigdl.nano.tf.keras.Sequential`) provides the APIs for all optimizations you need for inference.
|
||||
BigDL-Nano provides several APIs which can help users easily apply optimizations on inference pipelines to improve latency and throughput. The Keras Model(`bigdl.nano.tf.keras.Model`) and InferenceOptimizer(`bigdl.nano.tf.keras.InferenceOptimizer`) provides the APIs for all optimizations you need for inference.
|
||||
|
||||
```python
|
||||
from bigdl.nano.tf.keras import Model, Sequential
|
||||
from bigdl.nano.tf.keras import Model, InferenceOptimizer
|
||||
```
|
||||
|
||||
### Step 1: Loading Data
|
||||
|
|
@ -71,14 +71,15 @@ model.fit(train_ds, epochs=1)
|
|||
```
|
||||
|
||||
### Step 3: Quantization with Intel Neural Compressor
|
||||
[`Model.quantize()`](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Nano/tensorflow.html#bigdl.nano.tf.keras.Model) return a Keras module with desired precision and accuracy. Taking Resnet50 as an example, you can add quantization as below.
|
||||
[`InferenceOptimizer.quantize()`](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Nano/tensorflow.html#bigdl.nano.tf.keras.InferenceOptimizer.quantize) return a Keras module with desired precision and accuracy. Taking Resnet50 as an example, you can add quantization as below.
|
||||
|
||||
```python
|
||||
from tensorflow.keras.metrics import CategoricalAccuracy
|
||||
q_model = model.quantize(calib_dataset=dataset,
|
||||
metric=CategoricalAccuracy(),
|
||||
tuning_strategy='basic'
|
||||
)
|
||||
q_model = InferenceOptimizer.quantize(model,
|
||||
calib_dataset=dataset,
|
||||
metric=CategoricalAccuracy(),
|
||||
tuning_strategy='basic'
|
||||
)
|
||||
```
|
||||
The quantized model can be called to do inference as normal keras model.
|
||||
```python
|
||||
|
|
|
|||
Loading…
Reference in a new issue