add disk embedding (#11543)
This commit is contained in:
parent
76a5802acf
commit
7dc6756d86
1 changed files with 45 additions and 2 deletions
|
|
@ -15,6 +15,7 @@
|
|||
#
|
||||
|
||||
|
||||
import numpy
|
||||
import torch
|
||||
from torch import Tensor
|
||||
from torch.nn import functional as F
|
||||
|
|
@ -68,14 +69,56 @@ class LLMEmbedding(torch.nn.Embedding):
|
|||
_freeze: bool = False,
|
||||
device=None, dtype=None) -> None:
|
||||
super().__init__(num_embeddings, embedding_dim, padding_idx,
|
||||
max_norm, norm_type, scale_grad_by_freq, sparse,
|
||||
_weight, device, dtype)
|
||||
max_norm, norm_type, scale_grad_by_freq,
|
||||
sparse, _weight, _freeze, device, dtype)
|
||||
self.weight = CPUPinnedParam(self.weight.data, requires_grad=not _freeze)
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return super().forward(x.to('cpu')).to(x.device)
|
||||
|
||||
|
||||
class DiskEmbedding(torch.nn.Embedding):
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
embedding_dim: int,
|
||||
padding_idx: Optional[int] = None,
|
||||
max_norm: Optional[float] = None,
|
||||
norm_type: float = 2.,
|
||||
scale_grad_by_freq: bool = False,
|
||||
sparse: bool = False,
|
||||
_weight: Optional[Tensor] = None,
|
||||
_freeze: bool = False,
|
||||
device=None, dtype=None) -> None:
|
||||
super().__init__(num_embeddings, embedding_dim, padding_idx,
|
||||
max_norm, norm_type, scale_grad_by_freq,
|
||||
sparse, _weight, _freeze, device, dtype)
|
||||
self.filename = "embeddings.bin"
|
||||
self.weight.data.flatten().half().numpy().tofile(self.filename)
|
||||
dummy_weight = torch.empty(0, 0, dtype=self.weight.dtype, device=self.weight.device)
|
||||
self.weight = torch.nn.Parameter(dummy_weight, requires_grad=False)
|
||||
|
||||
def forward(self, input_ids: Tensor):
|
||||
ids = input_ids.cpu().flatten()
|
||||
|
||||
embeds = []
|
||||
with open(self.filename, 'rb') as f:
|
||||
for idx in ids:
|
||||
f.seek(idx * self.embedding_dim * 2)
|
||||
buffer = f.read(self.embedding_dim * 2)
|
||||
embeds.append(torch.frombuffer(buffer, dtype=torch.half))
|
||||
embeds = torch.stack(embeds).to(device=input_ids.device, dtype=self.weight.dtype)
|
||||
return embeds.view(*input_ids.size(), self.embedding_dim)
|
||||
|
||||
def restore(self):
|
||||
with open(self.filename, 'rb') as f:
|
||||
buffer = f.read()
|
||||
embeds = torch.frombuffer(buffer, dtype=torch.half).clone()
|
||||
embeds = embeds.view(self.num_embeddings, self.embedding_dim).to(
|
||||
device=self.weight.device, dtype=self.weight.dtype
|
||||
)
|
||||
self.weight = torch.nn.Parameter(embeds, requires_grad=False)
|
||||
|
||||
|
||||
class LowBitEmbedding(torch.nn.Embedding):
|
||||
def __init__(self,
|
||||
num_embeddings: int,
|
||||
|
|
|
|||
Loading…
Reference in a new issue