Update benchmark script for NPU (#11932)
This commit is contained in:
parent
730d9ec811
commit
7c8c9a0670
3 changed files with 20 additions and 8 deletions
|
|
@ -11,6 +11,7 @@ low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
|
|||
batch_size: 1 # default to 1
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '960-64'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4_fp16_gpu" # on Intel GPU, transformer-like API, (qtype=int4), (dtype=fp16)
|
||||
|
|
@ -37,5 +38,6 @@ test_api:
|
|||
# - "transformers_int4_npu_win" # on Intel NPU for Windows, transformer-like API, (qtype=int4)
|
||||
cpu_embedding: False # whether put embedding to CPU
|
||||
streaming: False # whether output in streaming way (only available now for gpu win related test_api)
|
||||
optimize_model: False # whether apply further optimization on NPU (only available now for transformers_int4_npu_win test_api)
|
||||
use_fp16_torch_dtype: True # whether use fp16 for non-linear layer (only available now for "pipeline_parallel_gpu" test_api)
|
||||
task: 'continuation' # task can be 'continuation', 'QA' and 'summarize'
|
||||
|
|
|
|||
|
|
@ -136,7 +136,7 @@ def preprocess_prompt(tokenizer, in_len, task):
|
|||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
return input_ids
|
||||
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation'):
|
||||
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False, batch_size=1, streaming=False, use_fp16_torch_dtype=False, lookahead=False, task='continuation', optimize_model=False):
|
||||
# TODO: make a parameter
|
||||
result= {}
|
||||
if test_api == 'transformer_int4':
|
||||
|
|
@ -188,7 +188,7 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
elif test_api == 'pipeline_parallel_gpu':
|
||||
result = run_pipeline_parallel_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, cpu_embedding, fp16=use_fp16_torch_dtype)
|
||||
elif test_api == 'transformers_int4_npu_win':
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size)
|
||||
result = transformers_int4_npu_win(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit, batch_size, optimize_model)
|
||||
else:
|
||||
invalidInputError(False, "Unknown test_api " + test_api + ", please check your config.yaml.")
|
||||
|
||||
|
|
@ -603,24 +603,30 @@ def transformers_int4_npu_win(repo_id,
|
|||
num_trials,
|
||||
num_beams,
|
||||
low_bit,
|
||||
batch_size):
|
||||
batch_size,
|
||||
optimize_model):
|
||||
from ipex_llm.transformers.npu_model import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer, LlamaTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
in_out_len = in_out_pairs[0].split("-")
|
||||
max_output_len = max(int(in_out_len[0]) + int(in_out_len[1]), 1024)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in CHATGLM_IDS:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
torch_dtype='auto', attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
elif repo_id in LLAMA_IDS:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype=torch.float16,
|
||||
optimize_model=optimize_model, max_output_len=max_output_len, max_prompt_len=int(in_out_len[0]), transpose_value_cache=True,
|
||||
use_cache=True, attn_implementation="eager").eval()
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
end = time.perf_counter()
|
||||
|
|
@ -643,6 +649,7 @@ def transformers_int4_npu_win(repo_id,
|
|||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_list = [true_str] * batch_size
|
||||
input_ids = tokenizer(input_list, return_tensors="pt").input_ids
|
||||
input_ids = input_ids[:, :in_len]
|
||||
actual_in_len = input_ids.shape[1]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
|
|
@ -2016,12 +2023,15 @@ if __name__ == '__main__':
|
|||
streaming = False
|
||||
use_fp16_torch_dtype = False
|
||||
task = 'continuation'
|
||||
optimize_model = False # only for transformers_int4_npu_win
|
||||
if 'streaming' in conf:
|
||||
streaming = conf['streaming']
|
||||
if 'use_fp16_torch_dtype' in conf:
|
||||
use_fp16_torch_dtype = conf['use_fp16_torch_dtype']
|
||||
if 'task' in conf:
|
||||
task = conf['task']
|
||||
if 'optimize_model' in conf:
|
||||
optimize_model = conf['optimize_model']
|
||||
lookahead = False
|
||||
|
||||
import pandas as pd
|
||||
|
|
@ -2048,7 +2058,7 @@ if __name__ == '__main__':
|
|||
if task in ['QA', 'summarize'] and conf['num_beams'] == 1 and batch_size == 1:
|
||||
lookahead = True
|
||||
run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task)
|
||||
conf['low_bit'], conf['cpu_embedding'], batch_size, streaming, use_fp16_torch_dtype, lookahead, task, optimize_model)
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
|
||||
'input/output tokens', 'batch_size', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding',
|
||||
'model loading time (s)', 'peak mem (GB)', 'streaming', 'use_fp16_torch_dtype'])
|
||||
|
|
|
|||
|
|
@ -117,7 +117,7 @@ class _BaseAutoModelClass:
|
|||
ignore_argument(kwargs, "pipeline_parallel_stages")
|
||||
optimize_model = kwargs.pop("optimize_model", False)
|
||||
max_output_len = kwargs.pop("max_output_len", 1024)
|
||||
max_prompt_len = kwargs.pop("max_prompt_len", max_output_len)
|
||||
max_prompt_len = kwargs.pop("max_prompt_len", 512)
|
||||
inter_pp = kwargs.pop("inter_pp", None)
|
||||
intra_pp = kwargs.pop("intra_pp", None)
|
||||
transpose_value_cache = kwargs.pop("transpose_value_cache", True)
|
||||
|
|
|
|||
Loading…
Reference in a new issue