Fix voice assistant example input error on Linux (#8799)
* fix linux error * update * remove alsa log
This commit is contained in:
parent
9537194b4b
commit
7c37424a63
2 changed files with 105 additions and 38 deletions
|
|
@ -19,7 +19,10 @@ pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-w
|
|||
pip install librosa soundfile datasets
|
||||
pip install accelerate
|
||||
pip install SpeechRecognition sentencepiece colorama
|
||||
# If you failed to install PyAudio, try to run sudo apt install portaudio19-dev on ubuntu
|
||||
pip install PyAudio inquirer sounddevice
|
||||
```
|
||||
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
|
|
@ -44,4 +47,55 @@ Arguments info:
|
|||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
Should be tested on a linux machine with microphone.
|
||||
```bash
|
||||
(llm) bigdl@bigdl-llm:~/Documents/voiceassistant$ python generate.py --llama2-repo-id-or-model-path /mnt/windows/demo/models/Llama-2-7b-chat-hf --whisper-repo-id-or-model-path /mnt/windows/demo/models/whisper-medium
|
||||
/home/bigdl/anaconda3/envs/llm/lib/python3.9/site-packages/torchvision/io/image.py:13: UserWarning: Failed to load image Python extension: ''If you don't plan on using image functionality from `torchvision.io`, you can ignore this warning. Otherwise, there might be something wrong with your environment. Did you have `libjpeg` or `libpng` installed before building `torchvision` from source?
|
||||
warn(
|
||||
|
||||
[?] Which microphone do you choose?: Default
|
||||
> Default
|
||||
HDA Intel PCH: ALC274 Analog (hw:0,0)
|
||||
HDA Intel PCH: HDMI 0 (hw:0,3)
|
||||
HDA Intel PCH: HDMI 1 (hw:0,7)
|
||||
HDA Intel PCH: HDMI 2 (hw:0,8)
|
||||
HDA Intel PCH: HDMI 3 (hw:0,9)
|
||||
HDA Intel PCH: HDMI 4 (hw:0,10)
|
||||
HDA Intel PCH: HDMI 5 (hw:0,11)
|
||||
HDA Intel PCH: HDMI 6 (hw:0,12)
|
||||
HDA Intel PCH: HDMI 7 (hw:0,13)
|
||||
HDA Intel PCH: HDMI 8 (hw:0,14)
|
||||
HDA Intel PCH: HDMI 9 (hw:0,15)
|
||||
HDA Intel PCH: HDMI 10 (hw:0,16)
|
||||
|
||||
The device name Default is selected.
|
||||
Downloading builder script: 100%|██████████████████████████████████████████████████████| 5.17k/5.17k [00:00<00:00, 14.3MB/s]
|
||||
Downloading data: 100%|████████████████████████████████████████████████████████████████████████████████████████| 9.08M/9.08M [00:01<00:00, 4.75MB/s]
|
||||
Downloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.57s/it]]
|
||||
Extracting data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 1/1 [00:00<00:00, 39.98it/s]
|
||||
Generating validation split: 73 examples [00:00, 5328.37 examples/s]
|
||||
Converting and loading models...
|
||||
Loading checkpoint shards: 100%|██████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:09<00:00, 3.04s/it]
|
||||
/home/bigdl/anaconda3/envs/yina-llm/lib/python3.9/site-packages/transformers/generation/configuration_utils.py:362: UserWarning: `do_sample` is set to `False`. However, `temperature` is set to `0.9` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `temperature`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
|
||||
warnings.warn(
|
||||
/home/bigdl/anaconda3/envs/yina-llm/lib/python3.9/site-packages/transformers/generation/configuration_utils.py:367: UserWarning: `do_sample` is set to `False`. However, `top_p` is set to `0.6` -- this flag is only used in sample-based generation modes. You should set `do_sample=True` or unset `top_p`. This was detected when initializing the generation config instance, which means the corresponding file may hold incorrect parameterization and should be fixed.
|
||||
warnings.warn(
|
||||
/home/bigdl/anaconda3/envs/yina-llm/lib/python3.9/site-packages/transformers/generation/utils.py:1411: UserWarning: You have modified the pretrained model configuration to control generation. This is a deprecated strategy to control generation and will be removed soon, in a future version. Please use a generation configuration file (see https://huggingface.co/docs/transformers/main_classes/text_generation )
|
||||
warnings.warn(
|
||||
Calibrating...
|
||||
Listening now...
|
||||
Recognizing...
|
||||
|
||||
Whisper :
|
||||
What is AI?
|
||||
|
||||
BigDL-LLM:
|
||||
Artificial intelligence (AI) is the broader field of research and development aimed at creating machines that can perform tasks that typically require human intelligence,
|
||||
Listening now...
|
||||
Recognizing...
|
||||
|
||||
Whisper :
|
||||
Tell me something about Intel
|
||||
|
||||
BigDL-LLM:
|
||||
Intel is a well-known technology company that specializes in designing, manufacturing, and selling computer hardware components and semiconductor products.
|
||||
```
|
||||
|
|
|
|||
|
|
@ -17,13 +17,15 @@
|
|||
import os
|
||||
import torch
|
||||
import time
|
||||
import intel_extension_for_pytorch as ipex
|
||||
import argparse
|
||||
import numpy as np
|
||||
import inquirer
|
||||
import sounddevice
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
|
||||
from transformers import LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
from transformers import WhisperProcessor
|
||||
from transformers import TextStreamer
|
||||
from colorama import Fore
|
||||
|
|
@ -49,27 +51,6 @@ def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
|||
texts.append(f'{message} [/INST]')
|
||||
return ''.join(texts)
|
||||
|
||||
def get_input_features(r):
|
||||
with sr.Microphone(device_index=1, sample_rate=16000) as source:
|
||||
print("Calibrating...")
|
||||
r.adjust_for_ambient_noise(source, duration=5)
|
||||
|
||||
print(Fore.YELLOW + "Listening now..." + Fore.RESET)
|
||||
try:
|
||||
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||||
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
|
||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
|
||||
input_features = input_features.half().contiguous().to('xpu')
|
||||
print("Recognizing...")
|
||||
except Exception as e:
|
||||
unrecognized_speech_text = (
|
||||
f"Sorry, I didn't catch that. Exception was: \n {e}"
|
||||
)
|
||||
print(unrecognized_speech_text)
|
||||
|
||||
return input_features
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||
parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
|
|
@ -82,6 +63,21 @@ if __name__ == '__main__':
|
|||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Select device
|
||||
mics = sr.Microphone.list_microphone_names()
|
||||
mics.insert(0, "Default")
|
||||
questions = [
|
||||
inquirer.List('device_name',
|
||||
message="Which microphone do you choose?",
|
||||
choices=mics)
|
||||
]
|
||||
answers = inquirer.prompt(questions)
|
||||
device_name = answers['device_name']
|
||||
idx = mics.index(device_name)
|
||||
device_index = None if idx == 0 else idx - 1
|
||||
print(f"The device name {device_name} is selected.")
|
||||
|
||||
whisper_model_path = args.whisper_repo_id_or_model_path
|
||||
llama_model_path = args.llama2_repo_id_or_model_path
|
||||
|
||||
|
|
@ -95,10 +91,10 @@ if __name__ == '__main__':
|
|||
# generate token ids
|
||||
whisper = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False)
|
||||
whisper.config.forced_decoder_ids = None
|
||||
whisper = whisper.half().to('xpu')
|
||||
whisper = whisper.to('xpu')
|
||||
|
||||
llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False)
|
||||
llama_model = llama_model.half().to('xpu')
|
||||
llama_model = llama_model.to('xpu')
|
||||
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
|
||||
|
||||
r = sr.Recognizer()
|
||||
|
|
@ -107,7 +103,7 @@ if __name__ == '__main__':
|
|||
# warm up
|
||||
sample = ds[2]["audio"]
|
||||
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
||||
input_features = input_features.half().contiguous().to('xpu')
|
||||
input_features = input_features.contiguous().to('xpu')
|
||||
torch.xpu.synchronize()
|
||||
predicted_ids = whisper.generate(input_features)
|
||||
torch.xpu.synchronize()
|
||||
|
|
@ -117,15 +113,32 @@ if __name__ == '__main__':
|
|||
output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
torch.xpu.synchronize()
|
||||
|
||||
while 1:
|
||||
input_features = get_input_features(r)
|
||||
predicted_ids = whisper.generate(input_features)
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
output_str = output_str[0]
|
||||
print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
|
||||
print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
|
||||
prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
|
||||
_ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)
|
||||
|
||||
with sr.Microphone(device_index=device_index, sample_rate=16000) as source:
|
||||
print("Calibrating...")
|
||||
r.adjust_for_ambient_noise(source, duration=5)
|
||||
|
||||
while 1:
|
||||
print(Fore.YELLOW + "Listening now..." + Fore.RESET)
|
||||
try:
|
||||
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||||
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
|
||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
print("Recognizing...")
|
||||
input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
|
||||
input_features = input_features.contiguous().to('xpu')
|
||||
except Exception as e:
|
||||
unrecognized_speech_text = (
|
||||
f"Sorry, I didn't catch that. Exception was: \n {e}"
|
||||
)
|
||||
print(unrecognized_speech_text)
|
||||
|
||||
predicted_ids = whisper.generate(input_features)
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
output_str = output_str[0]
|
||||
print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
|
||||
print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
|
||||
prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
|
||||
_ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)
|
||||
|
|
|
|||
Loading…
Reference in a new issue