[LLM] add new API for optimize any pytorch models (#8827)

* add new API for optimize any pytorch models

* change test util name

* revise API and update UT

* fix python style

* update ut config, change default value

* change defaults, disable ut transcribe
This commit is contained in:
Shengsheng Huang 2023-08-30 19:41:53 +08:00 committed by GitHub
parent 8eca982301
commit 7b566bf686
4 changed files with 89 additions and 3 deletions

View file

@ -76,6 +76,7 @@ jobs:
shell: bash
run: |
echo "SPEECH_DATASET_PATH=${DATASET_DIR}/librispeech_asr_dummy" >> "$GITHUB_ENV"
echo "COMMON_VOICE_PATH=${DATASET_DIR}/common_voice" >> "$GITHUB_ENV"
echo "LLAMA_ORIGIN_PATH=${ORIGIN_DIR}/llama-7b-hf" >> "$GITHUB_ENV"
echo "BLOOM_ORIGIN_PATH=${ORIGIN_DIR}/bloom-7b1" >> "$GITHUB_ENV"
@ -160,6 +161,11 @@ jobs:
echo "wget -r -nH --no-verbose --cut-dirs=2 $LLM_FTP_URL/llm/datasets/librispeech_asr_dummy -P $DATASET_DIR"
wget -r -nH --no-verbose --cut-dirs=2 $LLM_FTP_URL/llm/datasets/librispeech_asr_dummy -P $DATASET_DIR
fi
if [ ! -d $COMMON_VOICE_PATH ]; then
echo "Directory $COMMON_VOICE_PATH not found. Downloading from FTP server..."
echo "wget -r -nH --no-verbose --cut-dirs=2 $LLM_FTP_URL/llm/datasets/common_voice -P $DATASET_DIR"
wget -r -nH --no-verbose --cut-dirs=2 $LLM_FTP_URL/llm/datasets/common_voice -P $DATASET_DIR
fi
- name: Run LLM cli test (Linux)
if: runner.os == 'Linux'
@ -167,13 +173,11 @@ jobs:
- name: Run LLM cli test (Windows)
if: runner.os == 'Windows'
uses: ./.github/actions/llm/cli-test-windows
- name: Run LLM inference test
shell: bash
run: |
python -m pip install einops datasets librosa
python -m pip install einops datasets librosa openai-whisper
bash python/llm/test/run-llm-inference-tests.sh
- name: Run LLM langchain test
shell: bash
run: |

View file

@ -20,3 +20,4 @@
# only search the first bigdl package and end up finding only one sub-package.
from .convert_model import llm_convert
from .optimize import optimize_model

View file

@ -0,0 +1,37 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from .transformers import ggml_convert_quant
from bigdl.llm.ggml.quantize import ggml_tensor_qtype
from bigdl.llm.utils.common import invalidInputError
def optimize_model(model, low_bit='sym_int4', optimize_llm=True):
"""
A method to optimize any pytorch models.
:param model: The original PyTorch model (nn.module)
:param low_bit: Supported low-bit options are "sym_int4", "asym_int4", "sym_int5",
"asym_int5" or "sym_int8".
:param optimize_llm: Whether to further optimize llm model.
return: The optimized model.
"""
invalidInputError(low_bit in ggml_tensor_qtype,
f"Unknown load_in_low_bit value: {low_bit}, expected:"
f" sym_int4, asym_int4, sym_int5, asym_int5 or sym_int8.")
qtype = ggml_tensor_qtype[low_bit]
return ggml_convert_quant(model, qtype=qtype, optimize_model=optimize_llm)

View file

@ -0,0 +1,44 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import unittest
import os
import pytest
import time
import torch
from bigdl.llm import optimize_model
class TestOptimizeAPI(unittest.TestCase):
def setUp(self):
thread_num = os.environ.get('THREAD_NUM')
if thread_num is not None:
self.n_threads = int(thread_num)
else:
self.n_threads = 2
def test_optimize_whisper(self):
# dataset_path = os.environ.get('COMMON_VOICE_PATH')
# reservation_audio = os.path.join(dataset_path,'reservation.mp3')
import whisper
model = whisper.load_model("tiny")
model = optimize_model(model, low_bit="sym_int4", optimize_llm=False)
# result = model.transcribe(reservation_audio, verbose=True, language="English")
# assert "Reservation" or "reservation" in result["text"]
if __name__ == '__main__':
pytest.main([__file__])