Update MiniCPM-V-2_6 Example (#11958)
* Update example scripts regarding warmup, stream generate, moudles to not convert, etc. * Update readme accordingly * Fix based on comments * Small fix * Remove n_predict
This commit is contained in:
		
							parent
							
								
									6fc9340d53
								
							
						
					
					
						commit
						7abe17d6f7
					
				
					 3 changed files with 134 additions and 191 deletions
				
			
		| 
						 | 
					@ -5,7 +5,7 @@ In this directory, you will find examples on how you could apply IPEX-LLM INT4 o
 | 
				
			||||||
To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
					To run these examples with IPEX-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../../../README.md#requirements) for more information.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
## Example: Predict Tokens using `chat()` API
 | 
					## Example: Predict Tokens using `chat()` API
 | 
				
			||||||
In the example [generate.py](./generate.py), we show a basic use case for a MiniCPM-V-2_6 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
					In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V-2_6 model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations on Intel GPUs.
 | 
				
			||||||
### 1. Install
 | 
					### 1. Install
 | 
				
			||||||
#### 1.1 Installation on Linux
 | 
					#### 1.1 Installation on Linux
 | 
				
			||||||
We suggest using conda to manage environment:
 | 
					We suggest using conda to manage environment:
 | 
				
			||||||
| 
						 | 
					@ -15,7 +15,7 @@ conda activate llm
 | 
				
			||||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install timm peft transformers==4.40.0 trl
 | 
					pip install transformers==4.40.0 trl
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 1.2 Installation on Windows
 | 
					#### 1.2 Installation on Windows
 | 
				
			||||||
| 
						 | 
					@ -27,7 +27,7 @@ conda activate llm
 | 
				
			||||||
# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
					# below command will install intel_extension_for_pytorch==2.1.10+xpu as default
 | 
				
			||||||
pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
					pip install --pre --upgrade ipex-llm[xpu] --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/
 | 
				
			||||||
 | 
					
 | 
				
			||||||
pip install timm peft transformers==4.40.0 trl
 | 
					pip install transformers==4.40.0 trl
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. Configures OneAPI environment variables for Linux
 | 
					### 2. Configures OneAPI environment variables for Linux
 | 
				
			||||||
| 
						 | 
					@ -106,15 +106,23 @@ set SYCL_CACHE_PERSISTENT=1
 | 
				
			||||||
> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
					> For the first time that each model runs on Intel iGPU/Intel Arc™ A300-Series or Pro A60, it may take several minutes to compile.
 | 
				
			||||||
### 4. Running examples
 | 
					### 4. Running examples
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					- chat without streaming mode:
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
  python ./generate.py --prompt 'What is in the image?'
 | 
					  python ./generate.py --prompt 'What is in the image?'
 | 
				
			||||||
  ```
 | 
					  ```
 | 
				
			||||||
 | 
					- chat in streaming mode:
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					  python ./generate.py --prompt 'What is in the image?' --stream
 | 
				
			||||||
 | 
					  ```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					> [!TIP]
 | 
				
			||||||
 | 
					> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
Arguments info:
 | 
					Arguments info:
 | 
				
			||||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
 | 
					- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V-2_6 (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
 | 
				
			||||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
					- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
				
			||||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
					- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
				
			||||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
 | 
					- `--stream`: flag to chat in streaming mode
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### Sample Output
 | 
					#### Sample Output
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -122,21 +130,20 @@ Arguments info:
 | 
				
			||||||
 | 
					
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					Inference time: xxxx s
 | 
				
			||||||
-------------------- Input --------------------
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Input Prompt --------------------
 | 
				
			||||||
What is in the image?
 | 
					What is in the image?
 | 
				
			||||||
-------------------- Output --------------------
 | 
					-------------------- Chat Output --------------------
 | 
				
			||||||
The image features a young child holding a white teddy bear with a pink tutu. The child is wearing a striped dress and is standing in front of a stone wall with some red flowers in the background.
 | 
					The image features a young child holding a white teddy bear wearing a pink dress. The background shows some red flowers and stone walls, suggesting an outdoor setting.
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
```log
 | 
					```log
 | 
				
			||||||
Inference time: xxxx s
 | 
					-------------------- Input Image --------------------
 | 
				
			||||||
-------------------- Input --------------------
 | 
					 | 
				
			||||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
					http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
				
			||||||
-------------------- Prompt --------------------
 | 
					-------------------- Input Prompt --------------------
 | 
				
			||||||
图片里有什么?
 | 
					图片里有什么?
 | 
				
			||||||
-------------------- Output --------------------
 | 
					-------------------- Stream Chat Output --------------------
 | 
				
			||||||
这幅图片展示了一个年幼的孩子,可能是一个蹒跚学步的幼儿,手里拿着一个毛绒玩具熊。孩子穿着一件条纹连衣裙,主要颜色是粉红色和白色。毛绒熊是白色的,戴着一条粉色的蝴蝶结围裙。背景中有红色的花朵,暗示着室外的环境,可能是一个花园或公园。
 | 
					图片中有一个穿着粉红色连衣裙的小孩,手里拿着一只穿着粉色芭蕾裙的白色泰迪熊。背景中有红色花朵和石头墙,表明照片可能是在户外拍摄的。
 | 
				
			||||||
```
 | 
					```
 | 
				
			||||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
					The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,111 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import argparse
 | 
				
			||||||
 | 
					import requests
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					from PIL import Image
 | 
				
			||||||
 | 
					from ipex_llm.transformers import AutoModel
 | 
				
			||||||
 | 
					from transformers import AutoTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for openbmb/MiniCPM-V-2_6 model')
 | 
				
			||||||
 | 
					    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
				
			||||||
 | 
					                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
				
			||||||
 | 
					                             ', or the path to the huggingface checkpoint folder')
 | 
				
			||||||
 | 
					    parser.add_argument('--image-url-or-path', type=str,
 | 
				
			||||||
 | 
					                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
				
			||||||
 | 
					                        help='The URL or path to the image to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
				
			||||||
 | 
					                        help='Prompt to infer')
 | 
				
			||||||
 | 
					    parser.add_argument('--stream', action='store_true',
 | 
				
			||||||
 | 
					                        help='Whether to chat in streaming mode')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    args = parser.parse_args()
 | 
				
			||||||
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					    image_path = args.image_url_or_path
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
				
			||||||
 | 
					    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
				
			||||||
 | 
					    model = AutoModel.from_pretrained(model_path, 
 | 
				
			||||||
 | 
					                                      load_in_low_bit="sym_int4",
 | 
				
			||||||
 | 
					                                      optimize_model=True,
 | 
				
			||||||
 | 
					                                      trust_remote_code=True,
 | 
				
			||||||
 | 
					                                      use_cache=True,
 | 
				
			||||||
 | 
					                                      modules_to_not_convert=["vpm", "resampler"])
 | 
				
			||||||
 | 
					    model = model.half().to('xpu')
 | 
				
			||||||
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              trust_remote_code=True)
 | 
				
			||||||
 | 
					    model.eval()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query = args.prompt
 | 
				
			||||||
 | 
					    if os.path.exists(image_path):
 | 
				
			||||||
 | 
					       image = Image.open(image_path).convert('RGB')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # Generate predicted tokens
 | 
				
			||||||
 | 
					    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
				
			||||||
 | 
					    msgs = [{'role': 'user', 'content': [image, args.prompt]}]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # ipex_llm model needs a warmup, then inference time can be accurate
 | 
				
			||||||
 | 
					    model.chat(
 | 
				
			||||||
 | 
					        image=None,
 | 
				
			||||||
 | 
					        msgs=msgs,
 | 
				
			||||||
 | 
					        context=None,
 | 
				
			||||||
 | 
					        tokenizer=tokenizer,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if args.stream:
 | 
				
			||||||
 | 
					        res = model.chat(
 | 
				
			||||||
 | 
					            image=None,
 | 
				
			||||||
 | 
					            msgs=msgs,
 | 
				
			||||||
 | 
					            context=None,
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					            stream=True
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					        print(image_path)
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(args.prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Stream Chat Output', '-'*20)
 | 
				
			||||||
 | 
					        for new_text in res:
 | 
				
			||||||
 | 
					            print(new_text, flush=True, end='')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        st = time.time()
 | 
				
			||||||
 | 
					        res = model.chat(
 | 
				
			||||||
 | 
					            image=None,
 | 
				
			||||||
 | 
					            msgs=msgs,
 | 
				
			||||||
 | 
					            context=None,
 | 
				
			||||||
 | 
					            tokenizer=tokenizer,
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.time()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        print(f'Inference time: {end-st} s')
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Image', '-'*20)
 | 
				
			||||||
 | 
					        print(image_path)
 | 
				
			||||||
 | 
					        print('-'*20, 'Input Prompt', '-'*20)
 | 
				
			||||||
 | 
					        print(args.prompt)
 | 
				
			||||||
 | 
					        print('-'*20, 'Chat Output', '-'*20)
 | 
				
			||||||
 | 
					        print(res)
 | 
				
			||||||
| 
						 | 
					@ -1,175 +0,0 @@
 | 
				
			||||||
#
 | 
					 | 
				
			||||||
# Copyright 2016 The BigDL Authors.
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
					 | 
				
			||||||
# you may not use this file except in compliance with the License.
 | 
					 | 
				
			||||||
# You may obtain a copy of the License at
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
# Unless required by applicable law or agreed to in writing, software
 | 
					 | 
				
			||||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
					 | 
				
			||||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
					 | 
				
			||||||
# See the License for the specific language governing permissions and
 | 
					 | 
				
			||||||
# limitations under the License.
 | 
					 | 
				
			||||||
#
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
from typing import List, Tuple, Optional, Union
 | 
					 | 
				
			||||||
import math
 | 
					 | 
				
			||||||
import timm
 | 
					 | 
				
			||||||
import torch
 | 
					 | 
				
			||||||
import torch.nn.functional as F
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
# patched: `timm` has limited support for XPU backend, so we need to use CPU as a workaround
 | 
					 | 
				
			||||||
def resample_abs_pos_embed(
 | 
					 | 
				
			||||||
        posemb: torch.Tensor,
 | 
					 | 
				
			||||||
        new_size: List[int],
 | 
					 | 
				
			||||||
        old_size: Optional[List[int]] = None,
 | 
					 | 
				
			||||||
        num_prefix_tokens: int = 1,
 | 
					 | 
				
			||||||
        interpolation: str = 'bicubic',
 | 
					 | 
				
			||||||
        antialias: bool = True,
 | 
					 | 
				
			||||||
        verbose: bool = False,
 | 
					 | 
				
			||||||
):
 | 
					 | 
				
			||||||
    # sort out sizes, assume square if old size not provided
 | 
					 | 
				
			||||||
    num_pos_tokens = posemb.shape[1]
 | 
					 | 
				
			||||||
    num_new_tokens = new_size[0] * new_size[1] + num_prefix_tokens
 | 
					 | 
				
			||||||
    if num_new_tokens == num_pos_tokens and new_size[0] == new_size[1]:
 | 
					 | 
				
			||||||
        return posemb
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if old_size is None:
 | 
					 | 
				
			||||||
        hw = int(math.sqrt(num_pos_tokens - num_prefix_tokens))
 | 
					 | 
				
			||||||
        old_size = hw, hw
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if num_prefix_tokens:
 | 
					 | 
				
			||||||
        posemb_prefix, posemb = posemb[:, :num_prefix_tokens], posemb[:, num_prefix_tokens:]
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        posemb_prefix, posemb = None, posemb
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # do the interpolation
 | 
					 | 
				
			||||||
    embed_dim = posemb.shape[-1]
 | 
					 | 
				
			||||||
    orig_dtype = posemb.dtype
 | 
					 | 
				
			||||||
    posemb = posemb.float()  # interpolate needs float32
 | 
					 | 
				
			||||||
    posemb = posemb.reshape(1, old_size[0], old_size[1], -1).permute(0, 3, 1, 2)
 | 
					 | 
				
			||||||
    #posemb = F.interpolate(posemb, size=new_size, mode=interpolation, antialias=antialias)
 | 
					 | 
				
			||||||
    posemb = F.interpolate(posemb.to("cpu"), size=new_size, mode=interpolation, antialias=antialias).to(posemb.device)
 | 
					 | 
				
			||||||
    posemb = posemb.permute(0, 2, 3, 1).reshape(1, -1, embed_dim)
 | 
					 | 
				
			||||||
    posemb = posemb.to(orig_dtype)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # add back extra (class, etc) prefix tokens
 | 
					 | 
				
			||||||
    if posemb_prefix is not None:
 | 
					 | 
				
			||||||
        posemb = torch.cat([posemb_prefix, posemb], dim=1)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if not torch.jit.is_scripting() and verbose:
 | 
					 | 
				
			||||||
        _logger.info(f'Resized position embedding: {old_size} to {new_size}.')
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return posemb
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
def _pos_embed(self, x: torch.Tensor) -> torch.Tensor:
 | 
					 | 
				
			||||||
    if self.pos_embed is None:
 | 
					 | 
				
			||||||
        return x.view(x.shape[0], -1, x.shape[-1])
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if self.dynamic_img_size:
 | 
					 | 
				
			||||||
        B, H, W, C = x.shape
 | 
					 | 
				
			||||||
        pos_embed = resample_abs_pos_embed(
 | 
					 | 
				
			||||||
            self.pos_embed,
 | 
					 | 
				
			||||||
            (H, W),
 | 
					 | 
				
			||||||
            num_prefix_tokens=0 if self.no_embed_class else self.num_prefix_tokens,
 | 
					 | 
				
			||||||
        )
 | 
					 | 
				
			||||||
        x = x.view(B, -1, C)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        pos_embed = self.pos_embed
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    to_cat = []
 | 
					 | 
				
			||||||
    if self.cls_token is not None:
 | 
					 | 
				
			||||||
        to_cat.append(self.cls_token.expand(x.shape[0], -1, -1))
 | 
					 | 
				
			||||||
    if self.reg_token is not None:
 | 
					 | 
				
			||||||
        to_cat.append(self.reg_token.expand(x.shape[0], -1, -1))
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    if self.no_embed_class:
 | 
					 | 
				
			||||||
        # deit-3, updated JAX (big vision)
 | 
					 | 
				
			||||||
        # position embedding does not overlap with class token, add then concat
 | 
					 | 
				
			||||||
        x = x + pos_embed
 | 
					 | 
				
			||||||
        if to_cat:
 | 
					 | 
				
			||||||
            x = torch.cat(to_cat + [x], dim=1)
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
        # original timm, JAX, and deit vit impl
 | 
					 | 
				
			||||||
        # pos_embed has entry for class token, concat then add
 | 
					 | 
				
			||||||
        if to_cat:
 | 
					 | 
				
			||||||
            x = torch.cat(to_cat + [x], dim=1)
 | 
					 | 
				
			||||||
        x = x + pos_embed
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    return self.pos_drop(x)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
setattr(timm.models.VisionTransformer, "_pos_embed", _pos_embed)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
import os
 | 
					 | 
				
			||||||
import time
 | 
					 | 
				
			||||||
import argparse
 | 
					 | 
				
			||||||
import requests
 | 
					 | 
				
			||||||
from PIL import Image
 | 
					 | 
				
			||||||
from ipex_llm.transformers import AutoModel
 | 
					 | 
				
			||||||
from transformers import AutoTokenizer
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
if __name__ == '__main__':
 | 
					 | 
				
			||||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for openbmb/MiniCPM-V-2_6 model')
 | 
					 | 
				
			||||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
					 | 
				
			||||||
                        help='The huggingface repo id for the openbmb/MiniCPM-V-2_6 model to be downloaded'
 | 
					 | 
				
			||||||
                             ', or the path to the huggingface checkpoint folder')
 | 
					 | 
				
			||||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
					 | 
				
			||||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
					 | 
				
			||||||
                        help='The URL or path to the image to infer')
 | 
					 | 
				
			||||||
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
					 | 
				
			||||||
                        help='Prompt to infer')
 | 
					 | 
				
			||||||
    parser.add_argument('--n-predict', type=int, default=32,
 | 
					 | 
				
			||||||
                        help='Max tokens to predict')
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    args = parser.parse_args()
 | 
					 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					 | 
				
			||||||
    image_path = args.image_url_or_path
 | 
					 | 
				
			||||||
    
 | 
					 | 
				
			||||||
    # Load model in 4 bit,
 | 
					 | 
				
			||||||
    # which convert the relevant layers in the model into INT4 format
 | 
					 | 
				
			||||||
    # When running LLMs on Intel iGPUs for Windows users, we recommend setting `cpu_embedding=True` in the from_pretrained function.
 | 
					 | 
				
			||||||
    # This will allow the memory-intensive embedding layer to utilize the CPU instead of iGPU.
 | 
					 | 
				
			||||||
    model = AutoModel.from_pretrained(model_path, 
 | 
					 | 
				
			||||||
                                      load_in_low_bit="sym_int4",
 | 
					 | 
				
			||||||
                                      optimize_model=True,
 | 
					 | 
				
			||||||
                                      trust_remote_code=True,
 | 
					 | 
				
			||||||
                                      use_cache=True)
 | 
					 | 
				
			||||||
    model = model.half().to(device='xpu')
 | 
					 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					 | 
				
			||||||
                                              trust_remote_code=True)
 | 
					 | 
				
			||||||
    model.eval()
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    query = args.prompt
 | 
					 | 
				
			||||||
    if os.path.exists(image_path):
 | 
					 | 
				
			||||||
       image = Image.open(image_path).convert('RGB')
 | 
					 | 
				
			||||||
    else:
 | 
					 | 
				
			||||||
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    # Generate predicted tokens
 | 
					 | 
				
			||||||
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
					 | 
				
			||||||
    msgs = [{'role': 'user', 'content': [image, args.prompt]}]
 | 
					 | 
				
			||||||
    st = time.time()
 | 
					 | 
				
			||||||
    res = model.chat(
 | 
					 | 
				
			||||||
     image=None,
 | 
					 | 
				
			||||||
     msgs=msgs,
 | 
					 | 
				
			||||||
     context=None,
 | 
					 | 
				
			||||||
     tokenizer=tokenizer,
 | 
					 | 
				
			||||||
     sampling=False,
 | 
					 | 
				
			||||||
     temperature=0.7
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
    end = time.time()
 | 
					 | 
				
			||||||
    print(f'Inference time: {end-st} s')
 | 
					 | 
				
			||||||
    print('-'*20, 'Input', '-'*20)
 | 
					 | 
				
			||||||
    print(image_path)
 | 
					 | 
				
			||||||
    print('-'*20, 'Prompt', '-'*20)
 | 
					 | 
				
			||||||
    print(args.prompt)
 | 
					 | 
				
			||||||
    output_str = res
 | 
					 | 
				
			||||||
    print('-'*20, 'Output', '-'*20)
 | 
					 | 
				
			||||||
    print(output_str)
 | 
					 | 
				
			||||||
		Loading…
	
		Reference in a new issue