LLM: add benchmark scripts on GPU (#8916)
This commit is contained in:
		
							parent
							
								
									d8a01d7c4f
								
							
						
					
					
						commit
						7897eb4b51
					
				
					 4 changed files with 199 additions and 7 deletions
				
			
		| 
						 | 
				
			
			@ -6,12 +6,26 @@ Before running, make sure to have [bigdl-llm](../../../README.md) installed.
 | 
			
		|||
## Config
 | 
			
		||||
Config YAML file has following format
 | 
			
		||||
```yaml
 | 
			
		||||
model_name: model_path
 | 
			
		||||
# following is an example, with model name llama2
 | 
			
		||||
llama2: /path/to/llama2
 | 
			
		||||
repo_id:
 | 
			
		||||
  - 'THUDM/chatglm-6b'
 | 
			
		||||
  - 'THUDM/chatglm2-6b'
 | 
			
		||||
  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
			
		||||
local_model_hub: 'path to your local model hub'
 | 
			
		||||
warm_up: 1
 | 
			
		||||
num_trials: 3
 | 
			
		||||
in_out_pairs:
 | 
			
		||||
  - '32-32'
 | 
			
		||||
  - '1024-128'
 | 
			
		||||
test_api:
 | 
			
		||||
  - "transformer_int4"
 | 
			
		||||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  # - "transformer_int4_gpu"  # on arc
 | 
			
		||||
  # - "optimize_model_gpu"  # on arc
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Run
 | 
			
		||||
run `python run.py`, this will output results to `results.csv`.
 | 
			
		||||
 | 
			
		||||
For SPR performance, run `bash run-spr.sh`.
 | 
			
		||||
For ARC performance, run `bash run-arc.sh`
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -11,3 +11,6 @@ in_out_pairs:
 | 
			
		|||
test_api:
 | 
			
		||||
  - "transformer_int4"
 | 
			
		||||
  - "native_int4"
 | 
			
		||||
  - "optimize_model"
 | 
			
		||||
  # - "transformer_int4_gpu"  # on arc
 | 
			
		||||
  # - "optimize_model_gpu"  # on arc
 | 
			
		||||
							
								
								
									
										5
									
								
								python/llm/dev/benchmark/all-in-one/run-arc.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								python/llm/dev/benchmark/all-in-one/run-arc.sh
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,5 @@
 | 
			
		|||
source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
 | 
			
		||||
python run.py # make sure config YAML file
 | 
			
		||||
| 
						 | 
				
			
			@ -19,8 +19,6 @@
 | 
			
		|||
import torch
 | 
			
		||||
import time
 | 
			
		||||
 | 
			
		||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
import numpy as np
 | 
			
		||||
from datetime import date
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -41,6 +39,12 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'native_int4':
 | 
			
		||||
        run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'optimize_model':
 | 
			
		||||
        result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'transformer_int4_gpu':
 | 
			
		||||
        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
    elif test_api == 'optimize_model_gpu':
 | 
			
		||||
        result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
 | 
			
		||||
 | 
			
		||||
    for in_out_pair in in_out_pairs:
 | 
			
		||||
        results.append([repo_id,
 | 
			
		||||
| 
						 | 
				
			
			@ -101,6 +105,9 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
                         in_out_pairs,
 | 
			
		||||
                         warm_up,
 | 
			
		||||
                         num_trials):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
| 
						 | 
				
			
			@ -142,6 +149,169 @@ def run_transformer_int4(repo_id,
 | 
			
		|||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_optimize_model(repo_id,
 | 
			
		||||
                       local_model_hub,
 | 
			
		||||
                       in_out_pairs,
 | 
			
		||||
                       warm_up,
 | 
			
		||||
                       num_trials):
 | 
			
		||||
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_transformer_int4_gpu(repo_id,
 | 
			
		||||
                             local_model_hub,
 | 
			
		||||
                             in_out_pairs,
 | 
			
		||||
                             warm_up,
 | 
			
		||||
                             num_trials):
 | 
			
		||||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split("/")[1]
 | 
			
		||||
        model_path = local_model_hub + "/" + repo_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        model_path = repo_id
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                torch.xpu.synchronize()
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                output_ids = output_ids.cpu()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def run_optimize_model_gpu(repo_id,
 | 
			
		||||
                           local_model_hub,
 | 
			
		||||
                           in_out_pairs,
 | 
			
		||||
                           warm_up,
 | 
			
		||||
                           num_trials):
 | 
			
		||||
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split("/")[1]
 | 
			
		||||
        model_path = local_model_hub + "/" + repo_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        model_path = repo_id
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
    with torch.inference_mode():
 | 
			
		||||
        for in_out in in_out_pairs:
 | 
			
		||||
            in_out_len = in_out.split("-")
 | 
			
		||||
            in_len = int(in_out_len[0])
 | 
			
		||||
            out_len = int(in_out_len[1])
 | 
			
		||||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
                output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
 | 
			
		||||
                torch.xpu.synchronize()
 | 
			
		||||
                end = time.perf_counter()
 | 
			
		||||
                output_ids = output_ids.cpu()
 | 
			
		||||
                print("model generate cost: " + str(end - st))
 | 
			
		||||
                output = tokenizer.batch_decode(output_ids)
 | 
			
		||||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    from omegaconf import OmegaConf
 | 
			
		||||
    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
			
		||||
| 
						 | 
				
			
			@ -153,4 +323,4 @@ if __name__ == '__main__':
 | 
			
		|||
            run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
 | 
			
		||||
        df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens'])
 | 
			
		||||
        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
			
		||||
        result = []
 | 
			
		||||
        results = []
 | 
			
		||||
		Loading…
	
		Reference in a new issue