LLM: add benchmark scripts on GPU (#8916)

This commit is contained in:
binbin Deng 2023-09-07 18:08:17 +08:00 committed by GitHub
parent d8a01d7c4f
commit 7897eb4b51
4 changed files with 199 additions and 7 deletions

View file

@ -6,12 +6,26 @@ Before running, make sure to have [bigdl-llm](../../../README.md) installed.
## Config
Config YAML file has following format
```yaml
model_name: model_path
# following is an example, with model name llama2
llama2: /path/to/llama2
repo_id:
- 'THUDM/chatglm-6b'
- 'THUDM/chatglm2-6b'
- 'meta-llama/Llama-2-7b-chat-hf'
local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
in_out_pairs:
- '32-32'
- '1024-128'
test_api:
- "transformer_int4"
- "native_int4"
- "optimize_model"
# - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc
```
## Run
run `python run.py`, this will output results to `results.csv`.
For SPR performance, run `bash run-spr.sh`.
For SPR performance, run `bash run-spr.sh`.
For ARC performance, run `bash run-arc.sh`

View file

@ -11,3 +11,6 @@ in_out_pairs:
test_api:
- "transformer_int4"
- "native_int4"
- "optimize_model"
# - "transformer_int4_gpu" # on arc
# - "optimize_model_gpu" # on arc

View file

@ -0,0 +1,5 @@
source /opt/intel/oneapi/setvars.sh
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
python run.py # make sure config YAML file

View file

@ -19,8 +19,6 @@
import torch
import time
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer
import numpy as np
from datetime import date
@ -41,6 +39,12 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'native_int4':
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'optimize_model':
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'transformer_int4_gpu':
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'optimize_model_gpu':
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
for in_out_pair in in_out_pairs:
results.append([repo_id,
@ -101,6 +105,9 @@ def run_transformer_int4(repo_id,
in_out_pairs,
warm_up,
num_trials):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
@ -142,6 +149,169 @@ def run_transformer_int4(repo_id,
return result
def run_optimize_model(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from bigdl.llm import optimize_model
model_path = get_model_path(repo_id, local_model_hub)
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
model = optimize_model(model)
tokenizer = AutoTokenizer.from_pretrained(model_path)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = open(f"prompt/{in_len}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt")
input_ids = input_ids[:, :in_len]
true_str = tokenizer.batch_decode(input_ids)[0]
input_ids = tokenizer.encode(true_str, return_tensors="pt")
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
end = time.perf_counter()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
return result
def run_transformer_int4_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer
import intel_extension_for_pytorch as ipex
if local_model_hub:
repo_model_name = repo_id.split("/")[1]
model_path = local_model_hub + "/" + repo_model_name
else:
model_path = repo_id
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True)
model = model.to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True)
model = model.to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = open(f"prompt/{in_len}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
input_ids = input_ids[:, :in_len]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
return result
def run_optimize_model_gpu(repo_id,
local_model_hub,
in_out_pairs,
warm_up,
num_trials):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex
if local_model_hub:
repo_model_name = repo_id.split("/")[1]
model_path = local_model_hub + "/" + repo_model_name
else:
model_path = repo_id
# Load model in 4 bit,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
model = optimize_model(model)
model = model.to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
model = optimize_model(model)
model = model.to('xpu')
tokenizer = AutoTokenizer.from_pretrained(model_path)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
model = BenchmarkWrapper(model)
result = {}
with torch.inference_mode():
for in_out in in_out_pairs:
in_out_len = in_out.split("-")
in_len = int(in_out_len[0])
out_len = int(in_out_len[1])
input_str = open(f"prompt/{in_len}.txt", 'r').read()
# As different tokenizer has different encodings,
# slice the input_ids to ensure the prompt length is required length.
input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
input_ids = input_ids[:, :in_len]
result[in_out] = []
for i in range(num_trials + warm_up):
st = time.perf_counter()
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
torch.xpu.synchronize()
end = time.perf_counter()
output_ids = output_ids.cpu()
print("model generate cost: " + str(end - st))
output = tokenizer.batch_decode(output_ids)
print(output[0])
if i >= warm_up:
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
return result
if __name__ == '__main__':
from omegaconf import OmegaConf
conf = OmegaConf.load(f'{current_dir}/config.yaml')
@ -153,4 +323,4 @@ if __name__ == '__main__':
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens'])
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
result = []
results = []