LLM: add benchmark scripts on GPU (#8916)
This commit is contained in:
parent
d8a01d7c4f
commit
7897eb4b51
4 changed files with 199 additions and 7 deletions
|
|
@ -6,12 +6,26 @@ Before running, make sure to have [bigdl-llm](../../../README.md) installed.
|
|||
## Config
|
||||
Config YAML file has following format
|
||||
```yaml
|
||||
model_name: model_path
|
||||
# following is an example, with model name llama2
|
||||
llama2: /path/to/llama2
|
||||
repo_id:
|
||||
- 'THUDM/chatglm-6b'
|
||||
- 'THUDM/chatglm2-6b'
|
||||
- 'meta-llama/Llama-2-7b-chat-hf'
|
||||
local_model_hub: 'path to your local model hub'
|
||||
warm_up: 1
|
||||
num_trials: 3
|
||||
in_out_pairs:
|
||||
- '32-32'
|
||||
- '1024-128'
|
||||
test_api:
|
||||
- "transformer_int4"
|
||||
- "native_int4"
|
||||
- "optimize_model"
|
||||
# - "transformer_int4_gpu" # on arc
|
||||
# - "optimize_model_gpu" # on arc
|
||||
```
|
||||
|
||||
## Run
|
||||
run `python run.py`, this will output results to `results.csv`.
|
||||
|
||||
For SPR performance, run `bash run-spr.sh`.
|
||||
For SPR performance, run `bash run-spr.sh`.
|
||||
For ARC performance, run `bash run-arc.sh`
|
||||
|
|
|
|||
|
|
@ -11,3 +11,6 @@ in_out_pairs:
|
|||
test_api:
|
||||
- "transformer_int4"
|
||||
- "native_int4"
|
||||
- "optimize_model"
|
||||
# - "transformer_int4_gpu" # on arc
|
||||
# - "optimize_model_gpu" # on arc
|
||||
5
python/llm/dev/benchmark/all-in-one/run-arc.sh
Normal file
5
python/llm/dev/benchmark/all-in-one/run-arc.sh
Normal file
|
|
@ -0,0 +1,5 @@
|
|||
source /opt/intel/oneapi/setvars.sh
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
|
||||
python run.py # make sure config YAML file
|
||||
|
|
@ -19,8 +19,6 @@
|
|||
import torch
|
||||
import time
|
||||
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import numpy as np
|
||||
from datetime import date
|
||||
|
||||
|
|
@ -41,6 +39,12 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
|
|||
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'native_int4':
|
||||
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'optimize_model':
|
||||
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'transformer_int4_gpu':
|
||||
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
elif test_api == 'optimize_model_gpu':
|
||||
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
|
||||
|
||||
for in_out_pair in in_out_pairs:
|
||||
results.append([repo_id,
|
||||
|
|
@ -101,6 +105,9 @@ def run_transformer_int4(repo_id,
|
|||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
|
|
@ -142,6 +149,169 @@ def run_transformer_int4(repo_id,
|
|||
return result
|
||||
|
||||
|
||||
def run_optimize_model(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
|
||||
model_path = get_model_path(repo_id, local_model_hub)
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
|
||||
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
model = optimize_model(model)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
|
||||
model = optimize_model(model)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
input_str = open(f"prompt/{in_len}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt")
|
||||
input_ids = input_ids[:, :in_len]
|
||||
true_str = tokenizer.batch_decode(input_ids)[0]
|
||||
input_ids = tokenizer.encode(true_str, return_tensors="pt")
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
end = time.perf_counter()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
|
||||
return result
|
||||
|
||||
|
||||
def run_transformer_int4_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
|
||||
from transformers import AutoTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
if local_model_hub:
|
||||
repo_model_name = repo_id.split("/")[1]
|
||||
model_path = local_model_hub + "/" + repo_model_name
|
||||
else:
|
||||
model_path = repo_id
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
|
||||
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True)
|
||||
model = model.to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True)
|
||||
model = model.to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
input_str = open(f"prompt/{in_len}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
|
||||
input_ids = input_ids[:, :in_len]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
|
||||
return result
|
||||
|
||||
|
||||
def run_optimize_model_gpu(repo_id,
|
||||
local_model_hub,
|
||||
in_out_pairs,
|
||||
warm_up,
|
||||
num_trials):
|
||||
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
|
||||
from bigdl.llm import optimize_model
|
||||
import intel_extension_for_pytorch as ipex
|
||||
if local_model_hub:
|
||||
repo_model_name = repo_id.split("/")[1]
|
||||
model_path = local_model_hub + "/" + repo_model_name
|
||||
else:
|
||||
model_path = repo_id
|
||||
# Load model in 4 bit,
|
||||
# which convert the relevant layers in the model into INT4 format
|
||||
st = time.perf_counter()
|
||||
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
|
||||
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
|
||||
model = optimize_model(model)
|
||||
model = model.to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||
else:
|
||||
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
|
||||
model = optimize_model(model)
|
||||
model = model.to('xpu')
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||
end = time.perf_counter()
|
||||
print(">> loading of model costs {}s".format(end - st))
|
||||
|
||||
model = BenchmarkWrapper(model)
|
||||
|
||||
result = {}
|
||||
with torch.inference_mode():
|
||||
for in_out in in_out_pairs:
|
||||
in_out_len = in_out.split("-")
|
||||
in_len = int(in_out_len[0])
|
||||
out_len = int(in_out_len[1])
|
||||
input_str = open(f"prompt/{in_len}.txt", 'r').read()
|
||||
# As different tokenizer has different encodings,
|
||||
# slice the input_ids to ensure the prompt length is required length.
|
||||
input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
|
||||
input_ids = input_ids[:, :in_len]
|
||||
result[in_out] = []
|
||||
for i in range(num_trials + warm_up):
|
||||
st = time.perf_counter()
|
||||
output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len)
|
||||
torch.xpu.synchronize()
|
||||
end = time.perf_counter()
|
||||
output_ids = output_ids.cpu()
|
||||
print("model generate cost: " + str(end - st))
|
||||
output = tokenizer.batch_decode(output_ids)
|
||||
print(output[0])
|
||||
if i >= warm_up:
|
||||
result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
|
||||
return result
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
from omegaconf import OmegaConf
|
||||
conf = OmegaConf.load(f'{current_dir}/config.yaml')
|
||||
|
|
@ -153,4 +323,4 @@ if __name__ == '__main__':
|
|||
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'])
|
||||
df = pd.DataFrame(results, columns=['model', '1st token avg latency (s)', '2+ avg latency (s/token)', 'encoder time (s)', 'input/output tokens'])
|
||||
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
|
||||
result = []
|
||||
results = []
|
||||
Loading…
Reference in a new issue