Fix failed link in BigDL README (#6431)

This commit is contained in:
Yuwen Hu 2022-11-03 17:55:08 +08:00 committed by GitHub
parent 23d79f7b7b
commit 77129f33cf

View file

@ -147,8 +147,7 @@ flowchart TD;
</details> </details>
*See RayOnSpark [user guide](https://bigdl.readthedocs.io/en/latest/doc/Ray/Overview/ray.html) and [quickstart](https://bigdl.readthedocs.io/en/latest/doc/Ray/QuickStart/ray-quickstart.html) for more details.* *See RayOnSpark [user guide](https://bigdl.readthedocs.io/en/latest/doc/Orca/Overview/ray.html) and [quickstart](https://bigdl.readthedocs.io/en/latest/doc/Orca/QuickStart/ray-quickstart.html) for more details.*
### Nano ### Nano
You can transparently accelerate your TensorFlow or PyTorch programs on your laptop or server using *Nano*. With minimum code changes, *Nano* automatically applies modern CPU optimizations (e.g., SIMD, multiprocessing, low precision, etc.) to standard TensorFlow and PyTorch code, with up-to 10x speedup. You can transparently accelerate your TensorFlow or PyTorch programs on your laptop or server using *Nano*. With minimum code changes, *Nano* automatically applies modern CPU optimizations (e.g., SIMD, multiprocessing, low precision, etc.) to standard TensorFlow and PyTorch code, with up-to 10x speedup.
@ -361,7 +360,7 @@ pred = tsppl.predict(tsdata_test)
</details> </details>
*See Chronos [user guide](https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html) and [quick start](https://bigdl.readthedocs.io/en/latest/doc/Chronos/QuickStart/chronos-autotsest-quickstart.html) for more details.* *See Chronos [user guide](https://bigdl.readthedocs.io/en/latest/doc/Chronos/index.html) and [quick start](https://bigdl.readthedocs.io/en/latest/doc/Chronos/QuickStart/chronos-autotsest-quickstart.html) for more details.*
### Friesian ### Friesian
The *Chronos* library makes it easy to build end-to-end, large-scale **recommedation system** (including *offline* feature transformation and traning, *near-line* feature and model update, and *online* serving pipeline). The *Chronos* library makes it easy to build end-to-end, large-scale **recommedation system** (including *offline* feature transformation and traning, *near-line* feature and model update, and *online* serving pipeline).