LLM: add low_bit option in benchmark scripts (#9257)

This commit is contained in:
binbin Deng 2023-10-25 10:27:48 +08:00 committed by GitHub
parent ec9195da42
commit 770ac70b00
2 changed files with 31 additions and 24 deletions

View file

@ -6,6 +6,7 @@ local_model_hub: 'path to your local model hub'
warm_up: 1
num_trials: 3
num_beams: 1 # default to greedy search
low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
in_out_pairs:
- '32-32'
- '1024-128'

View file

@ -38,19 +38,19 @@ LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
results = []
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1):
def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4'):
# TODO: make a parameter
result= {}
if test_api == 'transformer_int4':
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'native_int4':
run_native_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials)
elif test_api == 'optimize_model':
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
result = run_optimize_model(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'transformer_int4_gpu':
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'optimize_model_gpu':
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
result = run_optimize_model_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
elif test_api == 'pytorch_autocast_bf16':
result = run_pytorch_autocast_bf16(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams)
elif test_api == 'ipex_fp16_gpu':
@ -65,7 +65,8 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
in_out_pair,
f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
num_beams])
num_beams,
low_bit])
def get_model_path(repo_id, local_model_hub):
@ -123,7 +124,8 @@ def run_transformer_int4(repo_id,
in_out_pairs,
warm_up,
num_trials,
num_beams):
num_beams,
low_bit):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, LlamaTokenizer
@ -132,14 +134,14 @@ def run_transformer_int4(repo_id,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True, torch_dtype='auto')
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto')
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
end = time.perf_counter()
@ -250,7 +252,8 @@ def run_optimize_model(repo_id,
in_out_pairs,
warm_up,
num_trials,
num_beams):
num_beams,
low_bit):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, LlamaTokenizer
from bigdl.llm import optimize_model
@ -260,16 +263,16 @@ def run_optimize_model(repo_id,
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,
use_cache=True, low_cpu_mem_usage=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
else:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = AutoTokenizer.from_pretrained(model_path)
end = time.perf_counter()
print(">> loading of model costs {}s".format(end - st))
@ -317,7 +320,8 @@ def run_transformer_int4_gpu(repo_id,
in_out_pairs,
warm_up,
num_trials,
num_beams):
num_beams,
low_bit):
from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
import intel_extension_for_pytorch as ipex
@ -326,17 +330,17 @@ def run_transformer_int4_gpu(repo_id,
# which convert the relevant layers in the model into INT4 format
st = time.perf_counter()
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, load_in_4bit=True, optimize_model=True,
model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
trust_remote_code=True, use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
use_cache=True)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True,
model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
trust_remote_code=True, use_cache=True)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
@ -392,7 +396,8 @@ def run_optimize_model_gpu(repo_id,
in_out_pairs,
warm_up,
num_trials,
num_beams):
num_beams,
low_bit):
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
from bigdl.llm import optimize_model
import intel_extension_for_pytorch as ipex
@ -403,19 +408,19 @@ def run_optimize_model_gpu(repo_id,
if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
trust_remote_code=True, use_cache=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
elif repo_id in LLAMA_IDS:
model = AutoModelForCausalLM.from_pretrained(model_path, load_in_4bit=True, trust_remote_code=True,
use_cache=True, low_cpu_mem_usage=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
else:
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True,
trust_remote_code=True, use_cache=True)
model = optimize_model(model)
model = optimize_model(model, low_bit=low_bit)
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = model.to('xpu')
if isinstance(model, GPTJForCausalLM):
@ -544,8 +549,9 @@ if __name__ == '__main__':
import pandas as pd
for api in conf.test_api:
for model in conf.repo_id:
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'])
run_model(model, api, conf['in_out_pairs'], conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'], conf['low_bit'])
df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
'input/output tokens', 'actual input/output tokens', 'num_beams'])
'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit'])
df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
results = []