Fix 1383 Llama model on transformers=4.41[WIP] (#11280)
This commit is contained in:
		
							parent
							
								
									475b0213d2
								
							
						
					
					
						commit
						7507000ef2
					
				
					 2 changed files with 716 additions and 10 deletions
				
			
		| 
						 | 
					@ -980,19 +980,32 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
        convert_forward(model,
 | 
					        convert_forward(model,
 | 
				
			||||||
                        transformers.models.llama.modeling_llama.LlamaDecoderLayer,
 | 
					                        transformers.models.llama.modeling_llama.LlamaDecoderLayer,
 | 
				
			||||||
                        llama_decoder_forward)
 | 
					                        llama_decoder_forward)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
					        if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
				
			||||||
            # transformers version >= 4.36.0
 | 
					            # transformers version >= 4.36.0
 | 
				
			||||||
            from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
 | 
					            from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
 | 
				
			||||||
            if version.parse(trans_version) >= version.parse("4.38.0"):
 | 
					            if version.parse(trans_version) >= version.parse("4.38.0"):
 | 
				
			||||||
                from ipex_llm.transformers.models.llama import llama_model_forward_4_38
 | 
					                if version.parse(trans_version) >= version.parse("4.41.0"):
 | 
				
			||||||
                convert_forward(
 | 
					                    from ipex_llm.transformers.models.llama import llama_model_forward_4_41
 | 
				
			||||||
                    model,
 | 
					                    from ipex_llm.transformers.models.llama import llama_attention_forward_4_41
 | 
				
			||||||
                    transformers.models.llama.modeling_llama.LlamaModel,
 | 
					                    convert_forward(
 | 
				
			||||||
                    llama_model_forward_4_38)
 | 
					                        model,
 | 
				
			||||||
                convert_forward(
 | 
					                        transformers.models.llama.modeling_llama.LlamaModel,
 | 
				
			||||||
                    model,
 | 
					                        llama_model_forward_4_41)
 | 
				
			||||||
                    transformers.models.llama.modeling_llama.LlamaAttention,
 | 
					                    convert_forward(
 | 
				
			||||||
                    llama_attention_forward_4_38)
 | 
					                        model,
 | 
				
			||||||
 | 
					                        transformers.models.llama.modeling_llama.LlamaAttention,
 | 
				
			||||||
 | 
					                        llama_attention_forward_4_41)
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    from ipex_llm.transformers.models.llama import llama_model_forward_4_38
 | 
				
			||||||
 | 
					                    convert_forward(
 | 
				
			||||||
 | 
					                        model,
 | 
				
			||||||
 | 
					                        transformers.models.llama.modeling_llama.LlamaModel,
 | 
				
			||||||
 | 
					                        llama_model_forward_4_38)
 | 
				
			||||||
 | 
					                    convert_forward(
 | 
				
			||||||
 | 
					                        model,
 | 
				
			||||||
 | 
					                        transformers.models.llama.modeling_llama.LlamaAttention,
 | 
				
			||||||
 | 
					                        llama_attention_forward_4_38)
 | 
				
			||||||
            else:
 | 
					            else:
 | 
				
			||||||
                from ipex_llm.transformers.models.llama import llama_model_forward_4_36
 | 
					                from ipex_llm.transformers.models.llama import llama_model_forward_4_36
 | 
				
			||||||
                convert_forward(
 | 
					                convert_forward(
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -167,6 +167,40 @@ def llama_model_forward_4_38(
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_model_forward_4_41(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    input_ids: torch.LongTensor = None,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]]=None,
 | 
				
			||||||
 | 
					    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
				
			||||||
 | 
					    use_cache: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_attentions: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_hidden_states: Optional[bool] = None,
 | 
				
			||||||
 | 
					    return_dict: Optional[bool] = None,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
				
			||||||
 | 
					    from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
				
			||||||
 | 
					    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
				
			||||||
 | 
					    input = input_ids if input_ids is not None else inputs_embeds
 | 
				
			||||||
 | 
					    if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
 | 
				
			||||||
 | 
					        if not isinstance(past_key_values, DynamicFp8Cache):
 | 
				
			||||||
 | 
					            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
				
			||||||
 | 
					    return llama_model_forward_4_41_internal(
 | 
				
			||||||
 | 
					        self=self,
 | 
				
			||||||
 | 
					        input_ids=input_ids,
 | 
				
			||||||
 | 
					        attention_mask=attention_mask,
 | 
				
			||||||
 | 
					        position_ids=position_ids,
 | 
				
			||||||
 | 
					        past_key_values=past_key_values,
 | 
				
			||||||
 | 
					        inputs_embeds=inputs_embeds,
 | 
				
			||||||
 | 
					        use_cache=use_cache,
 | 
				
			||||||
 | 
					        output_attentions=output_attentions,
 | 
				
			||||||
 | 
					        output_hidden_states=output_hidden_states,
 | 
				
			||||||
 | 
					        return_dict=return_dict,
 | 
				
			||||||
 | 
					        cache_position=cache_position,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def llama_rms_norm_forward(self, hidden_states):
 | 
					def llama_rms_norm_forward(self, hidden_states):
 | 
				
			||||||
    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
					    if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
 | 
				
			||||||
        import xe_addons
 | 
					        import xe_addons
 | 
				
			||||||
| 
						 | 
					@ -961,6 +995,530 @@ def llama_attention_selective_batching_forward_4_31(
 | 
				
			||||||
    return attn_output.to(original_dtype), attn_weights, updated_past_key_values
 | 
					    return attn_output.to(original_dtype), attn_weights, updated_past_key_values
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_attention_forward_4_41(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[List[torch.FloatTensor]] = None,
 | 
				
			||||||
 | 
					    output_attentions: bool = False,
 | 
				
			||||||
 | 
					    use_cache: bool = False,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    **kwargs
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
 | 
				
			||||||
 | 
					    if use_quantize_kv_cache(self.q_proj, hidden_states):
 | 
				
			||||||
 | 
					        forward_function = llama_attention_forward_4_41_quantized
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        forward_function = llama_attention_forward_4_41_original
 | 
				
			||||||
 | 
					    return forward_function(
 | 
				
			||||||
 | 
					        self=self,
 | 
				
			||||||
 | 
					        hidden_states=hidden_states,
 | 
				
			||||||
 | 
					        attention_mask=attention_mask,
 | 
				
			||||||
 | 
					        position_ids=position_ids,
 | 
				
			||||||
 | 
					        past_key_value=past_key_value,
 | 
				
			||||||
 | 
					        output_attentions=output_attentions,
 | 
				
			||||||
 | 
					        use_cache=use_cache,
 | 
				
			||||||
 | 
					        cache_position=cache_position,
 | 
				
			||||||
 | 
					        kwargs=kwargs
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_attention_forward_4_41_quantized(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[List[torch.FloatTensor]] = None,
 | 
				
			||||||
 | 
					    output_attentions: bool = False,
 | 
				
			||||||
 | 
					    use_cache: bool = False,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    **kwargs
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
 | 
				
			||||||
 | 
					    if "padding_mask" in kwargs:
 | 
				
			||||||
 | 
					        warnings.warn(
 | 
				
			||||||
 | 
					            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
				
			||||||
 | 
					            "Please make sure use `attention_mask` instead.`"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    bsz, q_len, _ = hidden_states.size()
 | 
				
			||||||
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
				
			||||||
 | 
					    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
 | 
				
			||||||
 | 
					    no_tp = not self.config.pretraining_tp > 1
 | 
				
			||||||
 | 
					    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
				
			||||||
 | 
					                                                use_fuse_rope,
 | 
				
			||||||
 | 
					                                                enough_kv_room,
 | 
				
			||||||
 | 
					                                                bsz * q_len,
 | 
				
			||||||
 | 
					                                                llama_decoding_fast_path_qtype_check) and no_tp
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					        tmp_cache_k, tmp_cache_v = init_kv_cache(
 | 
				
			||||||
 | 
					            bsz,
 | 
				
			||||||
 | 
					            self.num_key_value_heads,
 | 
				
			||||||
 | 
					            self.head_dim,
 | 
				
			||||||
 | 
					            0,
 | 
				
			||||||
 | 
					            1,
 | 
				
			||||||
 | 
					            dtype=hidden_states.dtype,
 | 
				
			||||||
 | 
					            device=device
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        import xe_linear
 | 
				
			||||||
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
 | 
					                                                                       position_ids,
 | 
				
			||||||
 | 
					                                                                       tmp_cache_k, tmp_cache_v,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       0,
 | 
				
			||||||
 | 
					                                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                                       self.rotary_emb.base,)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        query_states = self.q_proj(hidden_states)
 | 
				
			||||||
 | 
					        key_states = self.k_proj(hidden_states)
 | 
				
			||||||
 | 
					        value_states = self.v_proj(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        query_states = query_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        key_states = key_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        value_states = value_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            if self.layer_idx is None:
 | 
				
			||||||
 | 
					                invalidInputError(
 | 
				
			||||||
 | 
					                    False,
 | 
				
			||||||
 | 
					                    f"The cache structure has changed since version v4.36."
 | 
				
			||||||
 | 
					                    f" If you are using {self.__class__.__name__} "
 | 
				
			||||||
 | 
					                    f"for auto-regressive decoding with k/v caching,"
 | 
				
			||||||
 | 
					                    f" please make sure to initialize the attention class "
 | 
				
			||||||
 | 
					                    "with a layer index."
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					        if use_fuse_rope:
 | 
				
			||||||
 | 
					            rope_theta = self.rotary_emb.base
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
				
			||||||
 | 
					                                                                         key_states,
 | 
				
			||||||
 | 
					                                                                         position_ids,
 | 
				
			||||||
 | 
					                                                                         "llama",
 | 
				
			||||||
 | 
					                                                                         rope_theta=rope_theta)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            if cache_position is not None:
 | 
				
			||||||
 | 
					                # for transformers 4.38.0
 | 
				
			||||||
 | 
					                cos, sin = self.rotary_emb(value_states, position_ids)
 | 
				
			||||||
 | 
					                query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                                cos, sin, position_ids, "llama2")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					                query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                                cos, sin, position_ids, "llama")
 | 
				
			||||||
 | 
					    kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if len(past_key_value.key_cache) <= self.layer_idx:
 | 
				
			||||||
 | 
					        repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					        repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					        if should_split_qkv_tensor(query_states, bsz, self.num_heads,
 | 
				
			||||||
 | 
					                                   q_len, kv_seq_len, output_attentions):
 | 
				
			||||||
 | 
					            attn_output, _ = native_sdp_split_qkv_tensor(query_states, repeated_key_states,
 | 
				
			||||||
 | 
					                                                         repeated_value_states,
 | 
				
			||||||
 | 
					                                                         attention_mask, cache_position,
 | 
				
			||||||
 | 
					                                                         bsz, q_len, kv_seq_len, self.head_dim,
 | 
				
			||||||
 | 
					                                                         self.num_heads)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            attn_weights = torch.matmul(query_states, repeated_key_states
 | 
				
			||||||
 | 
					                                        .transpose(2, 3)) / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
				
			||||||
 | 
					                invalidInputError(
 | 
				
			||||||
 | 
					                    False,
 | 
				
			||||||
 | 
					                    f"Attention weights should be of size "
 | 
				
			||||||
 | 
					                    f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
 | 
				
			||||||
 | 
					                    f" {attn_weights.size()}"
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if attention_mask is not None:
 | 
				
			||||||
 | 
					                if cache_position is not None:
 | 
				
			||||||
 | 
					                    # for transformers 4.38.0
 | 
				
			||||||
 | 
					                    causal_mask = attention_mask[:, :, :, : kv_seq_len]
 | 
				
			||||||
 | 
					                    attn_weights = attn_weights + causal_mask
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
				
			||||||
 | 
					                    if attention_mask.size() != attn_mask_size:
 | 
				
			||||||
 | 
					                        invalidInputError(False,
 | 
				
			||||||
 | 
					                                          f"Attention mask should be of size {attn_mask_size}, "
 | 
				
			||||||
 | 
					                                          f"but is {attention_mask.size()}")
 | 
				
			||||||
 | 
					                    attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if kv_seq_len >= 2048 or bsz >= 64:
 | 
				
			||||||
 | 
					                # for memory considerations, do not upcast attention to fp32
 | 
				
			||||||
 | 
					                # for long sequences or large batches
 | 
				
			||||||
 | 
					                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                # upcast attention to fp32
 | 
				
			||||||
 | 
					                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
				
			||||||
 | 
					                                                     dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
 | 
					            attn_output = torch.matmul(attn_weights, repeated_value_states)
 | 
				
			||||||
 | 
					        if use_cache:
 | 
				
			||||||
 | 
					            cache_kwargs = None
 | 
				
			||||||
 | 
					            key_states, value_states = past_key_value.update(key_states, value_states,
 | 
				
			||||||
 | 
					                                                             self.layer_idx, cache_kwargs)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        cache_kwargs = None  # Specific to RoPE models
 | 
				
			||||||
 | 
					        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
				
			||||||
 | 
					                                                         self.layer_idx, cache_kwargs)
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					        if not use_sdp_fp8(q_len, key_states.shape[2], query_states):
 | 
				
			||||||
 | 
					            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
				
			||||||
 | 
					                                                            query_states.dtype)
 | 
				
			||||||
 | 
					            key_states = repeat_kv(key_states, self.num_key_value_groups)\
 | 
				
			||||||
 | 
					                .to(device, dtype=query_states.dtype)
 | 
				
			||||||
 | 
					            value_states = repeat_kv(value_states, self.num_key_value_groups)\
 | 
				
			||||||
 | 
					                .to(device, dtype=query_states.dtype)
 | 
				
			||||||
 | 
					            attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
 | 
				
			||||||
 | 
					            attn_weights = attn_weights / math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					            if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
 | 
				
			||||||
 | 
					                invalidInputError(
 | 
				
			||||||
 | 
					                    False,
 | 
				
			||||||
 | 
					                    f"Attention weights should be of size"
 | 
				
			||||||
 | 
					                    f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
 | 
				
			||||||
 | 
					                    f" but is {attn_weights.size()}"
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if attention_mask is not None:
 | 
				
			||||||
 | 
					                if cache_position is not None:
 | 
				
			||||||
 | 
					                    # for transformers 4.38.0
 | 
				
			||||||
 | 
					                    causal_mask = attention_mask[:, :, :, : kv_seq_len]
 | 
				
			||||||
 | 
					                    attn_weights = attn_weights + causal_mask
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    attn_mask_size = (bsz, 1, q_len, kv_seq_len)
 | 
				
			||||||
 | 
					                    if attention_mask.size() != attn_mask_size:
 | 
				
			||||||
 | 
					                        invalidInputError(False,
 | 
				
			||||||
 | 
					                                          f"Attention mask should be of size {attn_mask_size}, "
 | 
				
			||||||
 | 
					                                          f"but is {attention_mask.size()}")
 | 
				
			||||||
 | 
					                    attn_weights = attn_weights + attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if kv_seq_len >= 2048 or bsz >= 64:
 | 
				
			||||||
 | 
					                # for memory considerations, do not upcast attention to fp32
 | 
				
			||||||
 | 
					                # for long sequences or large batches
 | 
				
			||||||
 | 
					                attn_weights = nn.functional.softmax(attn_weights, dim=-1)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                # upcast attention to fp32
 | 
				
			||||||
 | 
					                attn_weights = nn.functional.softmax(attn_weights, dim=-1,
 | 
				
			||||||
 | 
					                                                     dtype=torch.float32).to(query_states.dtype)
 | 
				
			||||||
 | 
					            attn_output = torch.matmul(attn_weights, value_states)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            import xe_addons
 | 
				
			||||||
 | 
					            if cache_position is not None:
 | 
				
			||||||
 | 
					                new_attn_mask = attention_mask[:, :, :, 0:kv_seq_len]
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                new_attn_mask = attention_mask
 | 
				
			||||||
 | 
					            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
 | 
				
			||||||
 | 
					            attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
 | 
				
			||||||
 | 
					        invalidInputError(
 | 
				
			||||||
 | 
					            False,
 | 
				
			||||||
 | 
					            f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
 | 
				
			||||||
 | 
					            f" but is {attn_output.size()}"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if self.config.pretraining_tp > 1:
 | 
				
			||||||
 | 
					        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
				
			||||||
 | 
					        o_proj_slices = self.o_proj.weight.split(self.hidden_size
 | 
				
			||||||
 | 
					                                                 // self.config.pretraining_tp, dim=1)
 | 
				
			||||||
 | 
					        attn_output = sum([F.linear(attn_output[i],
 | 
				
			||||||
 | 
					                                    o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_attention_forward_4_41_original(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_value: Optional[List[torch.FloatTensor]] = None,
 | 
				
			||||||
 | 
					    output_attentions: bool = False,
 | 
				
			||||||
 | 
					    use_cache: bool = False,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    **kwargs
 | 
				
			||||||
 | 
					) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
 | 
				
			||||||
 | 
					    if "padding_mask" in kwargs:
 | 
				
			||||||
 | 
					        warnings.warn(
 | 
				
			||||||
 | 
					            "Passing `padding_mask` is deprecated and will be removed in v4.37. "
 | 
				
			||||||
 | 
					            "Please make sure use `attention_mask` instead.`"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    bsz, q_len, hidden_size = hidden_states.size()
 | 
				
			||||||
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					    # for flash attention
 | 
				
			||||||
 | 
					    original_dtype = hidden_states.dtype
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
 | 
				
			||||||
 | 
					    enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
 | 
				
			||||||
 | 
					    no_tp = not self.config.pretraining_tp > 1
 | 
				
			||||||
 | 
					    decoding_fast_path = use_decoding_fast_path(self.q_proj,
 | 
				
			||||||
 | 
					                                                use_fuse_rope,
 | 
				
			||||||
 | 
					                                                enough_kv_room,
 | 
				
			||||||
 | 
					                                                bsz * q_len,
 | 
				
			||||||
 | 
					                                                llama_decoding_fast_path_qtype_check) and no_tp
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # single batch decoding fast path
 | 
				
			||||||
 | 
					    # forward_qkv takes will perform QKV projection, rotary position embedding
 | 
				
			||||||
 | 
					    # and save the key/value states to cache, then return query states and the
 | 
				
			||||||
 | 
					    # extended key/value cache
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					        cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					        cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
 | 
					        import xe_linear
 | 
				
			||||||
 | 
					        query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight,
 | 
				
			||||||
 | 
					                                                                       position_ids,
 | 
				
			||||||
 | 
					                                                                       cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                                       self.q_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       self.v_proj.weight.qtype,
 | 
				
			||||||
 | 
					                                                                       kv_seq_len,
 | 
				
			||||||
 | 
					                                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                                       self.rotary_emb.base,)
 | 
				
			||||||
 | 
					        kv_seq_len += 1
 | 
				
			||||||
 | 
					        # update past_key_value's seem_tokens and kv caches.
 | 
				
			||||||
 | 
					        if self.layer_idx == 0:
 | 
				
			||||||
 | 
					            past_key_value._seen_tokens = kv_seq_len
 | 
				
			||||||
 | 
					        past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					        past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        if self.config.pretraining_tp > 1:
 | 
				
			||||||
 | 
					            key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
 | 
				
			||||||
 | 
					                                 self.config.pretraining_tp)
 | 
				
			||||||
 | 
					            query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
 | 
				
			||||||
 | 
					                                                    // self.config.pretraining_tp, dim=0)
 | 
				
			||||||
 | 
					            key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
 | 
				
			||||||
 | 
					            value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            query_states = [F.linear(hidden_states, query_slices[i])
 | 
				
			||||||
 | 
					                            for i in range(self.config.pretraining_tp)]
 | 
				
			||||||
 | 
					            query_states = torch.cat(query_states, dim=-1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            key_states = [F.linear(hidden_states, key_slices[i])
 | 
				
			||||||
 | 
					                          for i in range(self.config.pretraining_tp)]
 | 
				
			||||||
 | 
					            key_states = torch.cat(key_states, dim=-1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            value_states = [F.linear(hidden_states, value_slices[i])
 | 
				
			||||||
 | 
					                            for i in range(self.config.pretraining_tp)]
 | 
				
			||||||
 | 
					            value_states = torch.cat(value_states, dim=-1)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
 | 
				
			||||||
 | 
					                    hidden_size == 4096 and self.q_proj.out_features == self.k_proj.out_features:
 | 
				
			||||||
 | 
					                # only use mm_qkv_out on pvc for llama-7b
 | 
				
			||||||
 | 
					                if not hasattr(self, "qkv_proj_weight"):
 | 
				
			||||||
 | 
					                    self.qkv_proj_weight = torch.stack([self.q_proj.weight,
 | 
				
			||||||
 | 
					                                                        self.k_proj.weight,
 | 
				
			||||||
 | 
					                                                        self.v_proj.weight]).contiguous()
 | 
				
			||||||
 | 
					                    self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
 | 
				
			||||||
 | 
					                    self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
 | 
				
			||||||
 | 
					                    self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
 | 
				
			||||||
 | 
					                    torch.xpu.empty_cache()
 | 
				
			||||||
 | 
					                query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
				
			||||||
 | 
					                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
				
			||||||
 | 
					                key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
				
			||||||
 | 
					                                         dtype=hidden_states.dtype, device=hidden_states.device)
 | 
				
			||||||
 | 
					                value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
 | 
				
			||||||
 | 
					                                           dtype=hidden_states.dtype, device=hidden_states.device)
 | 
				
			||||||
 | 
					                torch.ops.torch_ipex.mm_qkv_out(
 | 
				
			||||||
 | 
					                    hidden_states, self.qkv_proj_weight, None,
 | 
				
			||||||
 | 
					                    query_states, key_states, value_states
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                if should_use_xetla_mm_qkv(self, device):
 | 
				
			||||||
 | 
					                    if not hasattr(self, "qkv_proj_qweight"):
 | 
				
			||||||
 | 
					                        self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
 | 
				
			||||||
 | 
					                                                                      self.k_proj,
 | 
				
			||||||
 | 
					                                                                      self.v_proj,
 | 
				
			||||||
 | 
					                                                                      self.q_proj.weight.qtype,)
 | 
				
			||||||
 | 
					                    import xe_linear
 | 
				
			||||||
 | 
					                    q_out_len = self.q_proj.out_len
 | 
				
			||||||
 | 
					                    k_out_len = self.k_proj.out_len
 | 
				
			||||||
 | 
					                    v_out_len = self.v_proj.out_len
 | 
				
			||||||
 | 
					                    qkv_states = xe_linear.mm_xetla(hidden_states,
 | 
				
			||||||
 | 
					                                                    self.qkv_proj_qweight,
 | 
				
			||||||
 | 
					                                                    self.q_proj.weight.qtype)
 | 
				
			||||||
 | 
					                    query_states = qkv_states[:, :, :q_out_len]
 | 
				
			||||||
 | 
					                    key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
 | 
				
			||||||
 | 
					                    value_states = qkv_states[:, :, q_out_len + k_out_len:]
 | 
				
			||||||
 | 
					                else:
 | 
				
			||||||
 | 
					                    query_states = self.q_proj(hidden_states)
 | 
				
			||||||
 | 
					                    key_states = self.k_proj(hidden_states)
 | 
				
			||||||
 | 
					                    value_states = self.v_proj(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        query_states = query_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        key_states = key_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                     self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					        value_states = value_states.view(bsz, q_len,
 | 
				
			||||||
 | 
					                                         self.num_key_value_heads, self.head_dim).transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        kv_seq_len = key_states.shape[-2]
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            if self.layer_idx is None:
 | 
				
			||||||
 | 
					                invalidInputError(False,
 | 
				
			||||||
 | 
					                                  "The cache structure has changed since version v4.36. "
 | 
				
			||||||
 | 
					                                  f"If you are using {self.__class__.__name__} for "
 | 
				
			||||||
 | 
					                                  "auto-regressive decodingwith k/v caching, please make sure "
 | 
				
			||||||
 | 
					                                  "to initialize the attention class with a layer index.")
 | 
				
			||||||
 | 
					            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_fuse_rope:
 | 
				
			||||||
 | 
					            rope_theta = self.rotary_emb.base
 | 
				
			||||||
 | 
					            query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
 | 
				
			||||||
 | 
					                                                                         key_states,
 | 
				
			||||||
 | 
					                                                                         position_ids,
 | 
				
			||||||
 | 
					                                                                         "llama",
 | 
				
			||||||
 | 
					                                                                         rope_theta=rope_theta)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            if cache_position is not None:
 | 
				
			||||||
 | 
					                # for transformers 4.38.0
 | 
				
			||||||
 | 
					                cos, sin = self.rotary_emb(value_states, position_ids)
 | 
				
			||||||
 | 
					                query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                                cos, sin, position_ids, "llama2")
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					                query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
 | 
				
			||||||
 | 
					                                                                cos, sin, position_ids, "llama")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if past_key_value is not None:
 | 
				
			||||||
 | 
					            # update the number of seen tokens
 | 
				
			||||||
 | 
					            if self.layer_idx == 0:
 | 
				
			||||||
 | 
					                past_key_value._seen_tokens += key_states.shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # reuse k, v, self_attention
 | 
				
			||||||
 | 
					            # update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
 | 
				
			||||||
 | 
					            if len(past_key_value.key_cache) <= self.layer_idx:
 | 
				
			||||||
 | 
					                past_key_value.key_cache.append(key_states)
 | 
				
			||||||
 | 
					                past_key_value.value_cache.append(value_states)
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                cache_k = past_key_value.key_cache[self.layer_idx]
 | 
				
			||||||
 | 
					                cache_v = past_key_value.value_cache[self.layer_idx]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if not enough_kv_room:
 | 
				
			||||||
 | 
					                    # allocate new
 | 
				
			||||||
 | 
					                    new_c_k, new_c_v = extend_kv_cache(bsz,
 | 
				
			||||||
 | 
					                                                       self.num_key_value_heads,  # Support GQA
 | 
				
			||||||
 | 
					                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                       cache_k.size(2),
 | 
				
			||||||
 | 
					                                                       kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                                                       dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                                                       device=device)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    new_c_k[:] = cache_k
 | 
				
			||||||
 | 
					                    new_c_v[:] = cache_v
 | 
				
			||||||
 | 
					                    cache_k = new_c_k
 | 
				
			||||||
 | 
					                    cache_v = new_c_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                key_states, value_states = append_kv_cache(cache_k,
 | 
				
			||||||
 | 
					                                                           cache_v,
 | 
				
			||||||
 | 
					                                                           key_states,
 | 
				
			||||||
 | 
					                                                           value_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                # update past_key_value
 | 
				
			||||||
 | 
					                past_key_value.key_cache[self.layer_idx] = key_states
 | 
				
			||||||
 | 
					                past_key_value.value_cache[self.layer_idx] = value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if cache_position is not None:
 | 
				
			||||||
 | 
					        new_attention_mask = attention_mask[:, :, :, 0:kv_seq_len]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        new_attention_mask = attention_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
 | 
					            use_flash_attention(query_states, key_states, new_attention_mask):
 | 
				
			||||||
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					        # now only use flash attention for first token
 | 
				
			||||||
 | 
					        attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
 | 
				
			||||||
 | 
					                                                     key_states.to(device, dtype=torch.float16),
 | 
				
			||||||
 | 
					                                                     value_states.to(device, dtype=torch.float16),
 | 
				
			||||||
 | 
					                                                     is_causal=True)
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					    elif not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
 | 
					            use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
 | 
				
			||||||
 | 
					        import xe_addons
 | 
				
			||||||
 | 
					        attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                    new_attention_mask)
 | 
				
			||||||
 | 
					        attn_output = attn_output.view(query_states.shape)
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # otherwise, use native attention
 | 
				
			||||||
 | 
					        if query_states.device.type == "xpu":
 | 
				
			||||||
 | 
					            attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                                   new_attention_mask, cache_position,
 | 
				
			||||||
 | 
					                                                   bsz, q_len, kv_seq_len,
 | 
				
			||||||
 | 
					                                                   self.head_dim, self.num_heads, output_attentions)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # CPU path
 | 
				
			||||||
 | 
					            if not output_attentions:
 | 
				
			||||||
 | 
					                attn_output = torch.nn.functional.scaled_dot_product_attention(
 | 
				
			||||||
 | 
					                    query_states,
 | 
				
			||||||
 | 
					                    key_states,
 | 
				
			||||||
 | 
					                    value_states,
 | 
				
			||||||
 | 
					                    attn_mask=new_attention_mask,
 | 
				
			||||||
 | 
					                    dropout_p=self.attention_dropout if self.training else 0.0,
 | 
				
			||||||
 | 
					                    # The q_len > 1 is necessary to match with
 | 
				
			||||||
 | 
					                    # AttentionMaskConverter.to_causal_4d that
 | 
				
			||||||
 | 
					                    # does not create a causal mask in case q_len == 1.
 | 
				
			||||||
 | 
					                    is_causal=self.is_causal and new_attention_mask is None and q_len > 1,
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					            else:
 | 
				
			||||||
 | 
					                attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
				
			||||||
 | 
					                                                       new_attention_mask, cache_position,
 | 
				
			||||||
 | 
					                                                       bsz, q_len, kv_seq_len,
 | 
				
			||||||
 | 
					                                                       self.head_dim,
 | 
				
			||||||
 | 
					                                                       self.num_heads, output_attentions)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
 | 
				
			||||||
 | 
					    if attn_output.size() != attn_output_size:
 | 
				
			||||||
 | 
					        invalidInputError(False,
 | 
				
			||||||
 | 
					                          f"`attn_output` should be of size {attn_output_size},"
 | 
				
			||||||
 | 
					                          f" but is {attn_output.size()}")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
				
			||||||
 | 
					    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if self.config.pretraining_tp > 1:
 | 
				
			||||||
 | 
					        attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
 | 
				
			||||||
 | 
					        o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
 | 
				
			||||||
 | 
					                                                 dim=1)
 | 
				
			||||||
 | 
					        attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
 | 
				
			||||||
 | 
					                           for i in range(self.config.pretraining_tp)])
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attn_output = self.o_proj(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not output_attentions:
 | 
				
			||||||
 | 
					        attn_weights = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return attn_output.to(original_dtype), attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def llama_attention_forward_4_38(
 | 
					def llama_attention_forward_4_38(
 | 
				
			||||||
    self,
 | 
					    self,
 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
| 
						 | 
					@ -1432,6 +1990,7 @@ def llama_attention_forward_4_38_original(
 | 
				
			||||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
					        # repeat k/v heads if n_kv_heads < n_heads
 | 
				
			||||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
					        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
				
			||||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
					        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # otherwise, use native attention
 | 
					        # otherwise, use native attention
 | 
				
			||||||
        if query_states.device.type == "xpu":
 | 
					        if query_states.device.type == "xpu":
 | 
				
			||||||
            attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
					            attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
 | 
				
			||||||
| 
						 | 
					@ -1717,7 +2276,8 @@ def llama_model_selective_batching_forward_4_31(
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    next_cache = next_decoder_cache if use_cache else None
 | 
					    next_cache = next_decoder_cache if use_cache else None
 | 
				
			||||||
    if not return_dict:
 | 
					    if not return_dict:
 | 
				
			||||||
        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)  # noqa
 | 
					        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
 | 
				
			||||||
 | 
					                     if v is not None)  # noqa
 | 
				
			||||||
    return BaseModelOutputWithPast(
 | 
					    return BaseModelOutputWithPast(
 | 
				
			||||||
        last_hidden_state=hidden_states,
 | 
					        last_hidden_state=hidden_states,
 | 
				
			||||||
        past_key_values=next_cache,
 | 
					        past_key_values=next_cache,
 | 
				
			||||||
| 
						 | 
					@ -1839,6 +2399,139 @@ def llama_attention_fast_forward(
 | 
				
			||||||
    return attn_output, attn_weights, past_key_value
 | 
					    return attn_output, attn_weights, past_key_value
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def llama_model_forward_4_41_internal(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    input_ids: torch.LongTensor = None,
 | 
				
			||||||
 | 
					    attention_mask: Optional[torch.Tensor] = None,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					    past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]]=None,
 | 
				
			||||||
 | 
					    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
				
			||||||
 | 
					    use_cache: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_attentions: Optional[bool] = None,
 | 
				
			||||||
 | 
					    output_hidden_states: Optional[bool] = None,
 | 
				
			||||||
 | 
					    return_dict: Optional[bool] = None,
 | 
				
			||||||
 | 
					    cache_position: Optional[torch.LongTensor] = None,
 | 
				
			||||||
 | 
					) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
				
			||||||
 | 
					    output_attentions = output_attentions\
 | 
				
			||||||
 | 
					        if output_attentions is not None else self.config.output_attentions
 | 
				
			||||||
 | 
					    output_hidden_states = (
 | 
				
			||||||
 | 
					        output_hidden_states
 | 
				
			||||||
 | 
					        if output_hidden_states is not None else self.config.output_hidden_states
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
				
			||||||
 | 
					    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
				
			||||||
 | 
					# retrieve input_ids and inputs_embeds
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if (input_ids is None) ^ (inputs_embeds is not None):
 | 
				
			||||||
 | 
					        invalidInputError(False,
 | 
				
			||||||
 | 
					                          f"You cannot specify both input_ids and inputs_embeds at the same time,"
 | 
				
			||||||
 | 
					                          f" and must specify either one")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if self.gradient_checkpointing and self.training and use_cache:
 | 
				
			||||||
 | 
					        logger.warning_once(
 | 
				
			||||||
 | 
					            "`use_cache=True` is incompatible with gradient checkpointing.",
 | 
				
			||||||
 | 
					            "Setting `use_cache=False`."
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        use_cache = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if inputs_embeds is None:
 | 
				
			||||||
 | 
					        inputs_embeds = self.embed_tokens(input_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return_legacy_cache = False
 | 
				
			||||||
 | 
					    # kept for BC (non `Cache` `past_key_values` inputs)
 | 
				
			||||||
 | 
					    if use_cache and not isinstance(past_key_values, Cache):
 | 
				
			||||||
 | 
					        return_legacy_cache = True
 | 
				
			||||||
 | 
					        past_key_values = DynamicCache.from_legacy_cache(past_key_values)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if cache_position is None:
 | 
				
			||||||
 | 
					        past_seen_tokens = past_key_values.get_seq_length() \
 | 
				
			||||||
 | 
					            if past_key_values is not None else 0
 | 
				
			||||||
 | 
					        cache_position = torch.arange(
 | 
				
			||||||
 | 
					            past_seen_tokens, past_seen_tokens
 | 
				
			||||||
 | 
					            + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					    if position_ids is None:
 | 
				
			||||||
 | 
					        position_ids = cache_position.unsqueeze(0)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    causal_mask = self._update_causal_mask(
 | 
				
			||||||
 | 
					        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # embed positions
 | 
				
			||||||
 | 
					    hidden_states = inputs_embeds
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # decoder layers
 | 
				
			||||||
 | 
					    all_hidden_states = () if output_hidden_states else None
 | 
				
			||||||
 | 
					    all_self_attns = () if output_attentions else None
 | 
				
			||||||
 | 
					    next_decoder_cache = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for decoder_layer in self.layers:
 | 
				
			||||||
 | 
					        if output_hidden_states:
 | 
				
			||||||
 | 
					            all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if self.gradient_checkpointing and self.training:
 | 
				
			||||||
 | 
					            layer_outputs = self._gradient_checkpointing_func(
 | 
				
			||||||
 | 
					                decoder_layer.__call__,
 | 
				
			||||||
 | 
					                hidden_states,
 | 
				
			||||||
 | 
					                causal_mask,
 | 
				
			||||||
 | 
					                position_ids,
 | 
				
			||||||
 | 
					                past_key_values,
 | 
				
			||||||
 | 
					                output_attentions,
 | 
				
			||||||
 | 
					                use_cache,
 | 
				
			||||||
 | 
					                cache_position,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            # bigdl-llm changes:
 | 
				
			||||||
 | 
					            curr_device = decoder_layer.input_layernorm.weight.device
 | 
				
			||||||
 | 
					            if causal_mask is not None:
 | 
				
			||||||
 | 
					                causal_mask = causal_mask.to(curr_device)
 | 
				
			||||||
 | 
					            if position_ids is not None:
 | 
				
			||||||
 | 
					                position_ids = position_ids.to(curr_device)
 | 
				
			||||||
 | 
					            # bigdl-llm changes end
 | 
				
			||||||
 | 
					            layer_outputs = decoder_layer(
 | 
				
			||||||
 | 
					                hidden_states,
 | 
				
			||||||
 | 
					                attention_mask=causal_mask,
 | 
				
			||||||
 | 
					                position_ids=position_ids,
 | 
				
			||||||
 | 
					                past_key_value=past_key_values,
 | 
				
			||||||
 | 
					                output_attentions=output_attentions,
 | 
				
			||||||
 | 
					                use_cache=use_cache,
 | 
				
			||||||
 | 
					                cache_position=cache_position,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        hidden_states = layer_outputs[0]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if use_cache:
 | 
				
			||||||
 | 
					            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if output_attentions:
 | 
				
			||||||
 | 
					            all_self_attns += (layer_outputs[1],)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    hidden_states = self.norm(hidden_states)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # add hidden states from the last decoder layer
 | 
				
			||||||
 | 
					    if output_hidden_states:
 | 
				
			||||||
 | 
					        all_hidden_states += (hidden_states,)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    next_cache = None
 | 
				
			||||||
 | 
					    from ipex_llm.transformers.kv import DynamicFp8Cache
 | 
				
			||||||
 | 
					    if use_cache:
 | 
				
			||||||
 | 
					        next_cache = (
 | 
				
			||||||
 | 
					            next_decoder_cache.to_legacy_cache()
 | 
				
			||||||
 | 
					            if not isinstance(next_decoder_cache, DynamicFp8Cache)
 | 
				
			||||||
 | 
					            else next_decoder_cache
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if not return_dict:
 | 
				
			||||||
 | 
					        return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
 | 
				
			||||||
 | 
					                     if v is not None)
 | 
				
			||||||
 | 
					    return BaseModelOutputWithPast(
 | 
				
			||||||
 | 
					        last_hidden_state=hidden_states,
 | 
				
			||||||
 | 
					        past_key_values=next_cache,
 | 
				
			||||||
 | 
					        hidden_states=all_hidden_states,
 | 
				
			||||||
 | 
					        attentions=all_self_attns,
 | 
				
			||||||
 | 
					    )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def llama_model_forward_4_38_internal(
 | 
					def llama_model_forward_4_38_internal(
 | 
				
			||||||
    self,
 | 
					    self,
 | 
				
			||||||
    input_ids: torch.LongTensor = None,
 | 
					    input_ids: torch.LongTensor = None,
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue