Fix 1383 Llama model on transformers=4.41[WIP] (#11280)
This commit is contained in:
parent
475b0213d2
commit
7507000ef2
2 changed files with 716 additions and 10 deletions
|
|
@ -980,10 +980,23 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
transformers.models.llama.modeling_llama.LlamaDecoderLayer,
|
transformers.models.llama.modeling_llama.LlamaDecoderLayer,
|
||||||
llama_decoder_forward)
|
llama_decoder_forward)
|
||||||
|
|
||||||
if version.parse(trans_version) >= version.parse("4.36.0"):
|
if version.parse(trans_version) >= version.parse("4.36.0"):
|
||||||
# transformers version >= 4.36.0
|
# transformers version >= 4.36.0
|
||||||
from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
|
from ipex_llm.transformers.models.llama import llama_attention_forward_4_38
|
||||||
if version.parse(trans_version) >= version.parse("4.38.0"):
|
if version.parse(trans_version) >= version.parse("4.38.0"):
|
||||||
|
if version.parse(trans_version) >= version.parse("4.41.0"):
|
||||||
|
from ipex_llm.transformers.models.llama import llama_model_forward_4_41
|
||||||
|
from ipex_llm.transformers.models.llama import llama_attention_forward_4_41
|
||||||
|
convert_forward(
|
||||||
|
model,
|
||||||
|
transformers.models.llama.modeling_llama.LlamaModel,
|
||||||
|
llama_model_forward_4_41)
|
||||||
|
convert_forward(
|
||||||
|
model,
|
||||||
|
transformers.models.llama.modeling_llama.LlamaAttention,
|
||||||
|
llama_attention_forward_4_41)
|
||||||
|
else:
|
||||||
from ipex_llm.transformers.models.llama import llama_model_forward_4_38
|
from ipex_llm.transformers.models.llama import llama_model_forward_4_38
|
||||||
convert_forward(
|
convert_forward(
|
||||||
model,
|
model,
|
||||||
|
|
|
||||||
|
|
@ -167,6 +167,40 @@ def llama_model_forward_4_38(
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def llama_model_forward_4_41(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]]=None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
from ipex_llm.transformers.kv import DynamicFp8Cache
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
input = input_ids if input_ids is not None else inputs_embeds
|
||||||
|
if use_cache and use_quantize_kv_cache(self.layers[0].mlp.up_proj, input):
|
||||||
|
if not isinstance(past_key_values, DynamicFp8Cache):
|
||||||
|
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
||||||
|
return llama_model_forward_4_41_internal(
|
||||||
|
self=self,
|
||||||
|
input_ids=input_ids,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_values=past_key_values,
|
||||||
|
inputs_embeds=inputs_embeds,
|
||||||
|
use_cache=use_cache,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
output_hidden_states=output_hidden_states,
|
||||||
|
return_dict=return_dict,
|
||||||
|
cache_position=cache_position,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def llama_rms_norm_forward(self, hidden_states):
|
def llama_rms_norm_forward(self, hidden_states):
|
||||||
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
if hidden_states.device.type == "xpu" and not (self.training and hidden_states.requires_grad):
|
||||||
import xe_addons
|
import xe_addons
|
||||||
|
|
@ -961,6 +995,530 @@ def llama_attention_selective_batching_forward_4_31(
|
||||||
return attn_output.to(original_dtype), attn_weights, updated_past_key_values
|
return attn_output.to(original_dtype), attn_weights, updated_past_key_values
|
||||||
|
|
||||||
|
|
||||||
|
def llama_attention_forward_4_41(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||||
|
if use_quantize_kv_cache(self.q_proj, hidden_states):
|
||||||
|
forward_function = llama_attention_forward_4_41_quantized
|
||||||
|
else:
|
||||||
|
forward_function = llama_attention_forward_4_41_original
|
||||||
|
return forward_function(
|
||||||
|
self=self,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_value,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
kwargs=kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def llama_attention_forward_4_41_quantized(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||||
|
if "padding_mask" in kwargs:
|
||||||
|
warnings.warn(
|
||||||
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||||
|
"Please make sure use `attention_mask` instead.`"
|
||||||
|
)
|
||||||
|
|
||||||
|
bsz, q_len, _ = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||||
|
no_tp = not self.config.pretraining_tp > 1
|
||||||
|
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||||
|
use_fuse_rope,
|
||||||
|
enough_kv_room,
|
||||||
|
bsz * q_len,
|
||||||
|
llama_decoding_fast_path_qtype_check) and no_tp
|
||||||
|
if decoding_fast_path:
|
||||||
|
hidden_states = hidden_states.view(1, -1)
|
||||||
|
tmp_cache_k, tmp_cache_v = init_kv_cache(
|
||||||
|
bsz,
|
||||||
|
self.num_key_value_heads,
|
||||||
|
self.head_dim,
|
||||||
|
0,
|
||||||
|
1,
|
||||||
|
dtype=hidden_states.dtype,
|
||||||
|
device=device
|
||||||
|
)
|
||||||
|
import xe_linear
|
||||||
|
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||||
|
self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight,
|
||||||
|
position_ids,
|
||||||
|
tmp_cache_k, tmp_cache_v,
|
||||||
|
self.q_proj.weight.qtype,
|
||||||
|
self.v_proj.weight.qtype,
|
||||||
|
0,
|
||||||
|
self.head_dim,
|
||||||
|
self.rotary_emb.base,)
|
||||||
|
else:
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(bsz, q_len,
|
||||||
|
self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = key_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
if self.layer_idx is None:
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"The cache structure has changed since version v4.36."
|
||||||
|
f" If you are using {self.__class__.__name__} "
|
||||||
|
f"for auto-regressive decoding with k/v caching,"
|
||||||
|
f" please make sure to initialize the attention class "
|
||||||
|
"with a layer index."
|
||||||
|
)
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
if use_fuse_rope:
|
||||||
|
rope_theta = self.rotary_emb.base
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
position_ids,
|
||||||
|
"llama",
|
||||||
|
rope_theta=rope_theta)
|
||||||
|
else:
|
||||||
|
if cache_position is not None:
|
||||||
|
# for transformers 4.38.0
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama2")
|
||||||
|
else:
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama")
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
|
||||||
|
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||||
|
repeated_key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
repeated_value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
if should_split_qkv_tensor(query_states, bsz, self.num_heads,
|
||||||
|
q_len, kv_seq_len, output_attentions):
|
||||||
|
attn_output, _ = native_sdp_split_qkv_tensor(query_states, repeated_key_states,
|
||||||
|
repeated_value_states,
|
||||||
|
attention_mask, cache_position,
|
||||||
|
bsz, q_len, kv_seq_len, self.head_dim,
|
||||||
|
self.num_heads)
|
||||||
|
else:
|
||||||
|
attn_weights = torch.matmul(query_states, repeated_key_states
|
||||||
|
.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
|
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention weights should be of size "
|
||||||
|
f"{(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
|
||||||
|
f" {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if cache_position is not None:
|
||||||
|
# for transformers 4.38.0
|
||||||
|
causal_mask = attention_mask[:, :, :, : kv_seq_len]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
else:
|
||||||
|
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||||
|
if attention_mask.size() != attn_mask_size:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"Attention mask should be of size {attn_mask_size}, "
|
||||||
|
f"but is {attention_mask.size()}")
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
if kv_seq_len >= 2048 or bsz >= 64:
|
||||||
|
# for memory considerations, do not upcast attention to fp32
|
||||||
|
# for long sequences or large batches
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||||
|
else:
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_output = torch.matmul(attn_weights, repeated_value_states)
|
||||||
|
if use_cache:
|
||||||
|
cache_kwargs = None
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
else:
|
||||||
|
cache_kwargs = None # Specific to RoPE models
|
||||||
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
|
self.layer_idx, cache_kwargs)
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if not use_sdp_fp8(q_len, key_states.shape[2], query_states):
|
||||||
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
|
query_states.dtype)
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)\
|
||||||
|
.to(device, dtype=query_states.dtype)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)\
|
||||||
|
.to(device, dtype=query_states.dtype)
|
||||||
|
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3))
|
||||||
|
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
||||||
|
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"Attention weights should be of size"
|
||||||
|
f" {(bsz, self.num_heads, q_len, kv_seq_len)},"
|
||||||
|
f" but is {attn_weights.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if attention_mask is not None:
|
||||||
|
if cache_position is not None:
|
||||||
|
# for transformers 4.38.0
|
||||||
|
causal_mask = attention_mask[:, :, :, : kv_seq_len]
|
||||||
|
attn_weights = attn_weights + causal_mask
|
||||||
|
else:
|
||||||
|
attn_mask_size = (bsz, 1, q_len, kv_seq_len)
|
||||||
|
if attention_mask.size() != attn_mask_size:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"Attention mask should be of size {attn_mask_size}, "
|
||||||
|
f"but is {attention_mask.size()}")
|
||||||
|
attn_weights = attn_weights + attention_mask
|
||||||
|
|
||||||
|
if kv_seq_len >= 2048 or bsz >= 64:
|
||||||
|
# for memory considerations, do not upcast attention to fp32
|
||||||
|
# for long sequences or large batches
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
||||||
|
else:
|
||||||
|
# upcast attention to fp32
|
||||||
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1,
|
||||||
|
dtype=torch.float32).to(query_states.dtype)
|
||||||
|
attn_output = torch.matmul(attn_weights, value_states)
|
||||||
|
else:
|
||||||
|
import xe_addons
|
||||||
|
if cache_position is not None:
|
||||||
|
new_attn_mask = attention_mask[:, :, :, 0:kv_seq_len]
|
||||||
|
else:
|
||||||
|
new_attn_mask = attention_mask
|
||||||
|
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, new_attn_mask)
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||||
|
invalidInputError(
|
||||||
|
False,
|
||||||
|
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||||
|
f" but is {attn_output.size()}"
|
||||||
|
)
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
if self.config.pretraining_tp > 1:
|
||||||
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||||
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size
|
||||||
|
// self.config.pretraining_tp, dim=1)
|
||||||
|
attn_output = sum([F.linear(attn_output[i],
|
||||||
|
o_proj_slices[i]) for i in range(self.config.pretraining_tp)])
|
||||||
|
else:
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def llama_attention_forward_4_41_original(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||||
|
if "padding_mask" in kwargs:
|
||||||
|
warnings.warn(
|
||||||
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||||
|
"Please make sure use `attention_mask` instead.`"
|
||||||
|
)
|
||||||
|
|
||||||
|
bsz, q_len, hidden_size = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
# for flash attention
|
||||||
|
original_dtype = hidden_states.dtype
|
||||||
|
|
||||||
|
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||||
|
no_tp = not self.config.pretraining_tp > 1
|
||||||
|
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||||
|
use_fuse_rope,
|
||||||
|
enough_kv_room,
|
||||||
|
bsz * q_len,
|
||||||
|
llama_decoding_fast_path_qtype_check) and no_tp
|
||||||
|
|
||||||
|
# single batch decoding fast path
|
||||||
|
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||||
|
# and save the key/value states to cache, then return query states and the
|
||||||
|
# extended key/value cache
|
||||||
|
if decoding_fast_path:
|
||||||
|
hidden_states = hidden_states.view(1, -1)
|
||||||
|
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||||
|
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||||
|
kv_seq_len = cache_k.shape[-2]
|
||||||
|
import xe_linear
|
||||||
|
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||||
|
self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight,
|
||||||
|
position_ids,
|
||||||
|
cache_k, cache_v,
|
||||||
|
self.q_proj.weight.qtype,
|
||||||
|
self.v_proj.weight.qtype,
|
||||||
|
kv_seq_len,
|
||||||
|
self.head_dim,
|
||||||
|
self.rotary_emb.base,)
|
||||||
|
kv_seq_len += 1
|
||||||
|
# update past_key_value's seem_tokens and kv caches.
|
||||||
|
if self.layer_idx == 0:
|
||||||
|
past_key_value._seen_tokens = kv_seq_len
|
||||||
|
past_key_value.key_cache[self.layer_idx] = key_states
|
||||||
|
past_key_value.value_cache[self.layer_idx] = value_states
|
||||||
|
|
||||||
|
else:
|
||||||
|
if self.config.pretraining_tp > 1:
|
||||||
|
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
|
||||||
|
self.config.pretraining_tp)
|
||||||
|
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
|
||||||
|
// self.config.pretraining_tp, dim=0)
|
||||||
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||||
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||||
|
|
||||||
|
query_states = [F.linear(hidden_states, query_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
query_states = torch.cat(query_states, dim=-1)
|
||||||
|
|
||||||
|
key_states = [F.linear(hidden_states, key_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
key_states = torch.cat(key_states, dim=-1)
|
||||||
|
|
||||||
|
value_states = [F.linear(hidden_states, value_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
value_states = torch.cat(value_states, dim=-1)
|
||||||
|
else:
|
||||||
|
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
|
||||||
|
hidden_size == 4096 and self.q_proj.out_features == self.k_proj.out_features:
|
||||||
|
# only use mm_qkv_out on pvc for llama-7b
|
||||||
|
if not hasattr(self, "qkv_proj_weight"):
|
||||||
|
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight]).contiguous()
|
||||||
|
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
|
||||||
|
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
|
||||||
|
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
|
||||||
|
torch.xpu.empty_cache()
|
||||||
|
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
torch.ops.torch_ipex.mm_qkv_out(
|
||||||
|
hidden_states, self.qkv_proj_weight, None,
|
||||||
|
query_states, key_states, value_states
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if should_use_xetla_mm_qkv(self, device):
|
||||||
|
if not hasattr(self, "qkv_proj_qweight"):
|
||||||
|
self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
|
||||||
|
self.k_proj,
|
||||||
|
self.v_proj,
|
||||||
|
self.q_proj.weight.qtype,)
|
||||||
|
import xe_linear
|
||||||
|
q_out_len = self.q_proj.out_len
|
||||||
|
k_out_len = self.k_proj.out_len
|
||||||
|
v_out_len = self.v_proj.out_len
|
||||||
|
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||||
|
self.qkv_proj_qweight,
|
||||||
|
self.q_proj.weight.qtype)
|
||||||
|
query_states = qkv_states[:, :, :q_out_len]
|
||||||
|
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||||
|
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||||
|
else:
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(bsz, q_len,
|
||||||
|
self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = key_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
if self.layer_idx is None:
|
||||||
|
invalidInputError(False,
|
||||||
|
"The cache structure has changed since version v4.36. "
|
||||||
|
f"If you are using {self.__class__.__name__} for "
|
||||||
|
"auto-regressive decodingwith k/v caching, please make sure "
|
||||||
|
"to initialize the attention class with a layer index.")
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
|
||||||
|
if use_fuse_rope:
|
||||||
|
rope_theta = self.rotary_emb.base
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
position_ids,
|
||||||
|
"llama",
|
||||||
|
rope_theta=rope_theta)
|
||||||
|
else:
|
||||||
|
if cache_position is not None:
|
||||||
|
# for transformers 4.38.0
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama2")
|
||||||
|
else:
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama")
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
# update the number of seen tokens
|
||||||
|
if self.layer_idx == 0:
|
||||||
|
past_key_value._seen_tokens += key_states.shape[-2]
|
||||||
|
|
||||||
|
# reuse k, v, self_attention
|
||||||
|
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||||
|
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||||
|
past_key_value.key_cache.append(key_states)
|
||||||
|
past_key_value.value_cache.append(value_states)
|
||||||
|
else:
|
||||||
|
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||||
|
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||||
|
|
||||||
|
if not enough_kv_room:
|
||||||
|
# allocate new
|
||||||
|
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||||
|
self.num_key_value_heads, # Support GQA
|
||||||
|
self.head_dim,
|
||||||
|
cache_k.size(2),
|
||||||
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||||
|
dtype=cache_k.dtype,
|
||||||
|
device=device)
|
||||||
|
|
||||||
|
new_c_k[:] = cache_k
|
||||||
|
new_c_v[:] = cache_v
|
||||||
|
cache_k = new_c_k
|
||||||
|
cache_v = new_c_v
|
||||||
|
|
||||||
|
key_states, value_states = append_kv_cache(cache_k,
|
||||||
|
cache_v,
|
||||||
|
key_states,
|
||||||
|
value_states)
|
||||||
|
|
||||||
|
# update past_key_value
|
||||||
|
past_key_value.key_cache[self.layer_idx] = key_states
|
||||||
|
past_key_value.value_cache[self.layer_idx] = value_states
|
||||||
|
|
||||||
|
if cache_position is not None:
|
||||||
|
new_attention_mask = attention_mask[:, :, :, 0:kv_seq_len]
|
||||||
|
|
||||||
|
else:
|
||||||
|
new_attention_mask = attention_mask
|
||||||
|
|
||||||
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_flash_attention(query_states, key_states, new_attention_mask):
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
# now only use flash attention for first token
|
||||||
|
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||||
|
key_states.to(device, dtype=torch.float16),
|
||||||
|
value_states.to(device, dtype=torch.float16),
|
||||||
|
is_causal=True)
|
||||||
|
attn_weights = None
|
||||||
|
elif not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||||
|
import xe_addons
|
||||||
|
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask)
|
||||||
|
attn_output = attn_output.view(query_states.shape)
|
||||||
|
attn_weights = None
|
||||||
|
else:
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
|
# otherwise, use native attention
|
||||||
|
if query_states.device.type == "xpu":
|
||||||
|
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask, cache_position,
|
||||||
|
bsz, q_len, kv_seq_len,
|
||||||
|
self.head_dim, self.num_heads, output_attentions)
|
||||||
|
else:
|
||||||
|
# CPU path
|
||||||
|
if not output_attentions:
|
||||||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=new_attention_mask,
|
||||||
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||||
|
# The q_len > 1 is necessary to match with
|
||||||
|
# AttentionMaskConverter.to_causal_4d that
|
||||||
|
# does not create a causal mask in case q_len == 1.
|
||||||
|
is_causal=self.is_causal and new_attention_mask is None and q_len > 1,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask, cache_position,
|
||||||
|
bsz, q_len, kv_seq_len,
|
||||||
|
self.head_dim,
|
||||||
|
self.num_heads, output_attentions)
|
||||||
|
|
||||||
|
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||||
|
if attn_output.size() != attn_output_size:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"`attn_output` should be of size {attn_output_size},"
|
||||||
|
f" but is {attn_output.size()}")
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
if self.config.pretraining_tp > 1:
|
||||||
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||||
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
|
||||||
|
dim=1)
|
||||||
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)])
|
||||||
|
else:
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
def llama_attention_forward_4_38(
|
def llama_attention_forward_4_38(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
@ -1432,6 +1990,7 @@ def llama_attention_forward_4_38_original(
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
|
||||||
# otherwise, use native attention
|
# otherwise, use native attention
|
||||||
if query_states.device.type == "xpu":
|
if query_states.device.type == "xpu":
|
||||||
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||||
|
|
@ -1717,7 +2276,8 @@ def llama_model_selective_batching_forward_4_31(
|
||||||
|
|
||||||
next_cache = next_decoder_cache if use_cache else None
|
next_cache = next_decoder_cache if use_cache else None
|
||||||
if not return_dict:
|
if not return_dict:
|
||||||
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) # noqa
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
|
if v is not None) # noqa
|
||||||
return BaseModelOutputWithPast(
|
return BaseModelOutputWithPast(
|
||||||
last_hidden_state=hidden_states,
|
last_hidden_state=hidden_states,
|
||||||
past_key_values=next_cache,
|
past_key_values=next_cache,
|
||||||
|
|
@ -1839,6 +2399,139 @@ def llama_attention_fast_forward(
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
|
def llama_model_forward_4_41_internal(
|
||||||
|
self,
|
||||||
|
input_ids: torch.LongTensor = None,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]]=None,
|
||||||
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
||||||
|
use_cache: Optional[bool] = None,
|
||||||
|
output_attentions: Optional[bool] = None,
|
||||||
|
output_hidden_states: Optional[bool] = None,
|
||||||
|
return_dict: Optional[bool] = None,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
|
output_attentions = output_attentions\
|
||||||
|
if output_attentions is not None else self.config.output_attentions
|
||||||
|
output_hidden_states = (
|
||||||
|
output_hidden_states
|
||||||
|
if output_hidden_states is not None else self.config.output_hidden_states
|
||||||
|
)
|
||||||
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||||
|
# retrieve input_ids and inputs_embeds
|
||||||
|
|
||||||
|
if (input_ids is None) ^ (inputs_embeds is not None):
|
||||||
|
invalidInputError(False,
|
||||||
|
f"You cannot specify both input_ids and inputs_embeds at the same time,"
|
||||||
|
f" and must specify either one")
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training and use_cache:
|
||||||
|
logger.warning_once(
|
||||||
|
"`use_cache=True` is incompatible with gradient checkpointing.",
|
||||||
|
"Setting `use_cache=False`."
|
||||||
|
)
|
||||||
|
use_cache = False
|
||||||
|
|
||||||
|
if inputs_embeds is None:
|
||||||
|
inputs_embeds = self.embed_tokens(input_ids)
|
||||||
|
|
||||||
|
return_legacy_cache = False
|
||||||
|
# kept for BC (non `Cache` `past_key_values` inputs)
|
||||||
|
if use_cache and not isinstance(past_key_values, Cache):
|
||||||
|
return_legacy_cache = True
|
||||||
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
||||||
|
|
||||||
|
if cache_position is None:
|
||||||
|
past_seen_tokens = past_key_values.get_seq_length() \
|
||||||
|
if past_key_values is not None else 0
|
||||||
|
cache_position = torch.arange(
|
||||||
|
past_seen_tokens, past_seen_tokens
|
||||||
|
+ inputs_embeds.shape[1], device=inputs_embeds.device
|
||||||
|
)
|
||||||
|
if position_ids is None:
|
||||||
|
position_ids = cache_position.unsqueeze(0)
|
||||||
|
|
||||||
|
causal_mask = self._update_causal_mask(
|
||||||
|
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
||||||
|
)
|
||||||
|
|
||||||
|
# embed positions
|
||||||
|
hidden_states = inputs_embeds
|
||||||
|
|
||||||
|
# decoder layers
|
||||||
|
all_hidden_states = () if output_hidden_states else None
|
||||||
|
all_self_attns = () if output_attentions else None
|
||||||
|
next_decoder_cache = None
|
||||||
|
|
||||||
|
for decoder_layer in self.layers:
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
if self.gradient_checkpointing and self.training:
|
||||||
|
layer_outputs = self._gradient_checkpointing_func(
|
||||||
|
decoder_layer.__call__,
|
||||||
|
hidden_states,
|
||||||
|
causal_mask,
|
||||||
|
position_ids,
|
||||||
|
past_key_values,
|
||||||
|
output_attentions,
|
||||||
|
use_cache,
|
||||||
|
cache_position,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
# bigdl-llm changes:
|
||||||
|
curr_device = decoder_layer.input_layernorm.weight.device
|
||||||
|
if causal_mask is not None:
|
||||||
|
causal_mask = causal_mask.to(curr_device)
|
||||||
|
if position_ids is not None:
|
||||||
|
position_ids = position_ids.to(curr_device)
|
||||||
|
# bigdl-llm changes end
|
||||||
|
layer_outputs = decoder_layer(
|
||||||
|
hidden_states,
|
||||||
|
attention_mask=causal_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_values,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
)
|
||||||
|
|
||||||
|
hidden_states = layer_outputs[0]
|
||||||
|
|
||||||
|
if use_cache:
|
||||||
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
||||||
|
|
||||||
|
if output_attentions:
|
||||||
|
all_self_attns += (layer_outputs[1],)
|
||||||
|
|
||||||
|
hidden_states = self.norm(hidden_states)
|
||||||
|
|
||||||
|
# add hidden states from the last decoder layer
|
||||||
|
if output_hidden_states:
|
||||||
|
all_hidden_states += (hidden_states,)
|
||||||
|
|
||||||
|
next_cache = None
|
||||||
|
from ipex_llm.transformers.kv import DynamicFp8Cache
|
||||||
|
if use_cache:
|
||||||
|
next_cache = (
|
||||||
|
next_decoder_cache.to_legacy_cache()
|
||||||
|
if not isinstance(next_decoder_cache, DynamicFp8Cache)
|
||||||
|
else next_decoder_cache
|
||||||
|
)
|
||||||
|
|
||||||
|
if not return_dict:
|
||||||
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
||||||
|
if v is not None)
|
||||||
|
return BaseModelOutputWithPast(
|
||||||
|
last_hidden_state=hidden_states,
|
||||||
|
past_key_values=next_cache,
|
||||||
|
hidden_states=all_hidden_states,
|
||||||
|
attentions=all_self_attns,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def llama_model_forward_4_38_internal(
|
def llama_model_forward_4_38_internal(
|
||||||
self,
|
self,
|
||||||
input_ids: torch.LongTensor = None,
|
input_ids: torch.LongTensor = None,
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue