Orca: update doc for pytorch estimator backend. (#6723)

* feat: update doc for pytorch estimator backend.

* fix: remove ray global dependency.

* rm: remove .swp file.

* fix: revert ray import fix.

* fix: replace model and optimizer with  model_creator and optimizer_creator.

* fix: delete unnecessary links.

* fix: update index.md

* fix: fix code style of quickstart and jupyter notebook.

* fix: remove criterion.

* fix: fix dataset description.

* fix: fix code style.

* fix: fix code style.

* fix: update batch size and link

* fix: update link

* fix: fix code style.

* fix: fix unnecessary code.

* fix: fix typo.

* fix: use relative path.

* fix: fix typo.

* fix: fix link.
This commit is contained in:
Cengguang Zhang 2022-11-23 19:09:01 +08:00 committed by GitHub
parent ca3b088522
commit 745aaef5df
5 changed files with 208 additions and 67 deletions

View file

@ -151,21 +151,25 @@ The `data` argument in `fit` method can be a spark DataFrame, an *XShards* or a
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/orca.html#orca-learn-tf2-tf2-spark-estimator) for more details.
***For more details, view the distributed TensorFlow training/inference [page]()<TODO: link to be added>.***
### 3. PyTorch Estimator
**Using *BigDL* backend**
Users may create a PyTorch `Estimator` using the *BigDL* backend (currently default for PyTorch) as follows:
Users may create a PyTorch `Estimator` using the *Spark* backend (currently default for PyTorch) as follows:
```python
model = LeNet() # a torch.nn.Module
model.train()
criterion = nn.NLLLoss()
def model_creator(config):
model = LeNet() # a torch.nn.Module
model.train()
return model
adam = torch.optim.Adam(model.parameters(), args.lr)
est = Estimator.from_torch(model=model, optimizer=adam, loss=criterion)
def optimizer_creator(model, config):
return torch.optim.Adam(model.parameters(), config["lr"])
est = Estimator.from_torch(model=model_creator,
optimizer=optimizer_creator,
loss=nn.NLLLoss(),
config={"lr": 1e-2})
```
Then users can perform distributed model training and inference as follows:
@ -192,7 +196,7 @@ def model_creator(config):
def optimizer_creator(model, config):
return torch.optim.Adam(model.parameters(), config["lr"])
est = Estimator.from_torch(model=model,
est = Estimator.from_torch(model=model_creator,
optimizer=optimizer_creator,
loss=nn.NLLLoss(),
config={"lr": 1e-2},
@ -211,8 +215,6 @@ The input to `fit` methods can be a Spark DataFrame, an *XShards*, or a *Data Cr
View the related [Python API doc](https://bigdl.readthedocs.io/en/latest/doc/PythonAPI/Orca/orca.html#orca-learn-pytorch-pytorch-ray-estimator) for more details.
***For more details, view the distributed PyTorch training/inference [page]()<TODO: link to be added>.***
### 4. MXNet Estimator
The user may create a MXNet `Estimator` as follows:
@ -248,8 +250,6 @@ est.fit(get_train_data_iter, epochs=2)
The input to `fit` methods can be an *XShards*, or a *Data Creator Function* (that returns an `MXNet DataIter/DataLoader`). See the *data-parallel processing pipeline* [page](./data-parallel-processing.html) for more details.
View the related [Python API doc]()<TODO: link to be added> for more details.
### 5. BigDL Estimator
The user may create a BigDL `Estimator` as follows:

View file

@ -11,7 +11,7 @@
- [**PyTorch Quickstart**](./orca-pytorch-quickstart.html)
> ![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)
> ![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_spark.ipynb)
In this guide we will describe how to scale out PyTorch programs using Orca in 5 simple steps.

View file

@ -0,0 +1,149 @@
# PyTorch Quickstart
---
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_bigdl.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_bigdl.ipynb)
---
**In this guide we will describe how to scale out _PyTorch_ programs using Orca in 4 simple steps.**
### Step 0: Prepare Environment
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details.
```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
conda activate py37
pip install bigdl-orca
pip install torch==1.7.1 torchvision==0.8.2
pip install six cloudpickle
pip install jep==3.9.0
```
### Step 1: Init Orca Context
```python
from bigdl.orca import init_orca_context, stop_orca_context
cluster_mode = "local"
if cluster_mode == "local": # For local machine
init_orca_context(cores=4, memory="10g")
elif cluster_mode == "k8s": # For K8s cluster
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1)
elif cluster_mode == "yarn": # For Hadoop/YARN cluster
init_orca_context(
cluster_mode="yarn", cores=2, num_nodes=2, memory="10g",
driver_memory="10g", driver_cores=1,
conf={"spark.rpc.message.maxSize": "1024",
"spark.task.maxFailures": "1",
"spark.driver.extraJavaOptions": "-Dbigdl.failure.retryTimes=1"})
```
This is the only place where you need to specify local or distributed mode. View [Orca Context](./../Overview/orca-context.md) for more details.
**Note:** You should `export HADOOP_CONF_DIR=/path/to/hadoop/conf/dir` when running on Hadoop YARN cluster. View [Hadoop User Guide](./../../UserGuide/hadoop.md) for more details.
### Step 2: Define the Model
You may define your model, loss and optimizer in the same way as in any standard (single node) PyTorch program.
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(1, 20, 5, 1)
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2, 2)
x = x.view(-1, 4*4*50)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
model = LeNet()
model.train()
criterion = nn.NLLLoss()
adam = torch.optim.Adam(model.parameters(), 0.001)
```
### Step 3: Define Train Dataset
You can define the dataset using standard [Pytorch DataLoader](https://pytorch.org/docs/stable/data.html).
```python
import torch
from torchvision import datasets, transforms
torch.manual_seed(0)
dir='./'
batch_size=64
test_batch_size=64
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=False)
```
Alternatively, we can also use a [Data Creator Function](https://github.com/intel-analytics/BigDL/blob/main/docs/docs/colab-notebook/orca/quickstart/pytorch_lenet_mnist_data_creator_func.ipynb) or [Orca XShards](../Overview/data-parallel-processing) as the input data, especially when the data size is very large)
### Step 4: Fit with Orca Estimator
First, Create an Estimator
```python
from bigdl.orca.learn.pytorch import Estimator
from bigdl.orca.learn.metrics import Accuracy
est = Estimator.from_torch(model=model, optimizer=adam, loss=criterion, metrics=[Accuracy()])
```
Next, fit and evaluate using the Estimator
```python
from bigdl.orca.learn.trigger import EveryEpoch
est.fit(data=train_loader, epochs=10, validation_data=test_loader,
checkpoint_trigger=EveryEpoch())
result = est.evaluate(data=test_loader)
for r in result:
print(r, ":", result[r])
```
### Step 5: Save and Load the Model
Save the Estimator states (including model and optimizer) to the provided model path.
```python
est.save("mnist_model")
```
Load the Estimator states (model and possibly with optimizer) from the provided model path.
```python
est.load("mnist_model")
```
**Note:** You should call `stop_orca_context()` when your application finishes.

View file

@ -2,7 +2,7 @@
---
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_distributed_lenet_mnist.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_distributed_lenet_mnist.ipynb)
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_ray.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_ray.ipynb)
---

View file

@ -2,24 +2,22 @@
---
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist.ipynb)
![](../../../../image/colab_logo_32px.png)[Run in Google Colab](https://colab.research.google.com/github/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_spark.ipynb) &nbsp;![](../../../../image/GitHub-Mark-32px.png)[View source on GitHub](https://github.com/intel-analytics/BigDL/blob/main/python/orca/colab-notebook/quickstart/pytorch_lenet_mnist_spark.ipynb)
---
**In this guide we will describe how to scale out _PyTorch_ programs using Orca in 4 simple steps.**
**In this guide we will describe how to scale out _PyTorch_ programs using Orca in 5 simple steps.**
### Step 0: Prepare Environment
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details.
```bash
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
conda activate py37
pip install bigdl-orca
pip install torch==1.7.1 torchvision==0.8.2
pip install six cloudpickle
pip install jep==3.9.0
pip install --pre --upgrade bigdl-orca
pip install torch torchvision
pip install tqdm
```
### Step 1: Init Orca Context
@ -32,12 +30,7 @@ if cluster_mode == "local": # For local machine
elif cluster_mode == "k8s": # For K8s cluster
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1)
elif cluster_mode == "yarn": # For Hadoop/YARN cluster
init_orca_context(
cluster_mode="yarn", cores=2, num_nodes=2, memory="10g",
driver_memory="10g", driver_cores=1,
conf={"spark.rpc.message.maxSize": "1024",
"spark.task.maxFailures": "1",
"spark.driver.extraJavaOptions": "-Dbigdl.failure.retryTimes=1"})
init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1)
```
This is the only place where you need to specify local or distributed mode. View [Orca Context](./../Overview/orca-context.md) for more details.
@ -60,7 +53,7 @@ class LeNet(nn.Module):
self.conv2 = nn.Conv2d(20, 50, 5, 1)
self.fc1 = nn.Linear(4*4*50, 500)
self.fc2 = nn.Linear(500, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2, 2)
@ -70,44 +63,50 @@ class LeNet(nn.Module):
x = F.relu(self.fc1(x))
x = self.fc2(x)
return F.log_softmax(x, dim=1)
```
After defining your model, you need to define a *Model Creator Function* that takes the parameter `config` and returns an instance of your model, and a *Optimizer Creator Function* that has two parameters `model` and `config` and returns a PyTorch optimizer.
model = LeNet()
model.train()
criterion = nn.NLLLoss()
adam = torch.optim.Adam(model.parameters(), 0.001)
```python
def model_creator(config):
model = LeNet()
return model
def optim_creator(model, config):
return torch.optim.Adam(model.parameters(), lr=0.001)
```
### Step 3: Define Train Dataset
You can define the dataset using standard [Pytorch DataLoader](https://pytorch.org/docs/stable/data.html).
You can define the dataset using a *Data Creator Function* that has two parameters `config` and `batch_size` and returns a [Pytorch DataLoader](https://pytorch.org/docs/stable/data.html). Orca also supports [Spark DataFrames](../Overview/data-parallel-processing.html#spark-dataframes) and [XShards](../Overview/data-parallel-processing.html#xshards-distributed-data-parallel-python-processing).
```python
import torch
from torchvision import datasets, transforms
torch.manual_seed(0)
dir='./'
batch_size = 64
dir = '/tmp/dataset'
batch_size=64
test_batch_size=64
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=test_batch_size, shuffle=False)
def train_loader_creator(config, batch_size):
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=True)
return train_loader
def test_loader_creator(config, batch_size):
test_loader = torch.utils.data.DataLoader(
datasets.MNIST(dir, train=False,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=batch_size, shuffle=False)
return test_loader
```
Alternatively, we can also use a [Data Creator Function](https://github.com/intel-analytics/BigDL/blob/main/docs/docs/colab-notebook/orca/quickstart/pytorch_lenet_mnist_data_creator_func.ipynb) or [Orca XShards](../Overview/data-parallel-processing) as the input data, especially when the data size is very large)
### Step 4: Fit with Orca Estimator
First, Create an Estimator
@ -116,34 +115,27 @@ First, Create an Estimator
from bigdl.orca.learn.pytorch import Estimator
from bigdl.orca.learn.metrics import Accuracy
est = Estimator.from_torch(model=model, optimizer=adam, loss=criterion, metrics=[Accuracy()], backend="bigdl")
est = Estimator.from_torch(model=model_creator, optimizer=optim_creator, loss=nn.NLLLoss(), metrics=[Accuracy()], use_tqdm=True)
```
Next, fit and evaluate using the Estimator
```python
from bigdl.orca.learn.trigger import EveryEpoch
est.fit(data=train_loader, epochs=10, validation_data=test_loader,
checkpoint_trigger=EveryEpoch())
result = est.evaluate(data=test_loader)
est.fit(data=train_loader_creator, epochs=1, batch_size=batch_size)
result = est.evaluate(data=test_loader_creator, batch_size=batch_size)
for r in result:
print(r, ":", result[r])
```
### Step 5: Save and Load the Model
### Step 5: Save the Model
Save the Estimator states (including model and optimizer) to the provided model path.
```python
est.save("mnist_model")
```
Load the Estimator states (model and possibly with optimizer) from the provided model path.
```python
est.load("mnist_model")
# stop orca context when program finishes
stop_orca_context()
```
**Note:** You should call `stop_orca_context()` when your application finishes.