LLM: add kv cache to falcon family. (#8995)
* add kv cache to falcon family. * fix: import error. * refactor * update comments. * add two version falcon attention forward. * fix * fix. * fix. * fix. * fix style. * fix style.
This commit is contained in:
		
							parent
							
								
									94a7f8917b
								
							
						
					
					
						commit
						735a17f7b4
					
				
					 2 changed files with 615 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -173,7 +173,31 @@ def optimize(model):
 | 
			
		|||
                        module.SelfAttention,
 | 
			
		||||
                        chatglm_attention_forward
 | 
			
		||||
                        )
 | 
			
		||||
 | 
			
		||||
    elif "falcon" in model.config._name_or_path:
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        if "RWForCausalLM" in model.config.architectures:
 | 
			
		||||
            if hasattr(model.config, "multi_query"):
 | 
			
		||||
                # falcon-7b
 | 
			
		||||
                from bigdl.llm.transformers.models.falcon import rw_attention_forward_7b
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.Attention,
 | 
			
		||||
                                rw_attention_forward_7b
 | 
			
		||||
                                )
 | 
			
		||||
            else:
 | 
			
		||||
                # falcon-40b
 | 
			
		||||
                from bigdl.llm.transformers.models.falcon import rw_attention_forward_40b
 | 
			
		||||
                convert_forward(model,
 | 
			
		||||
                                module.Attention,
 | 
			
		||||
                                rw_attention_forward_40b
 | 
			
		||||
                                )
 | 
			
		||||
        elif "FalconForCausalLM" in model.config.architectures:
 | 
			
		||||
            # falcon-180b
 | 
			
		||||
            from bigdl.llm.transformers.models.falcon import falcon_attention_forward
 | 
			
		||||
            convert_forward(model,
 | 
			
		||||
                            module.FalconAttention,
 | 
			
		||||
                            falcon_attention_forward
 | 
			
		||||
                            )
 | 
			
		||||
    elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
 | 
			
		||||
        # baichuan2
 | 
			
		||||
        if model.config.hidden_size == 4096:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										590
									
								
								python/llm/src/bigdl/llm/transformers/models/falcon.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										590
									
								
								python/llm/src/bigdl/llm/transformers/models/falcon.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,590 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
# Some parts of this file is adapted from
 | 
			
		||||
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/falcon/modeling_falcon.py
 | 
			
		||||
# which is licensed under Apache License 2.0:
 | 
			
		||||
#
 | 
			
		||||
# Copyright 2023 the Falcon authors and HuggingFace Inc. team.  All rights reserved.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
"""PyTorch Falcon model."""
 | 
			
		||||
 | 
			
		||||
import math
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from torch.nn import functional as F
 | 
			
		||||
from bigdl.llm.utils.common import invalidInputError
 | 
			
		||||
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rw_attention_forward_7b(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
    alibi: torch.Tensor,
 | 
			
		||||
    attention_mask: torch.Tensor,
 | 
			
		||||
    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
    head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
    use_cache: bool=False,
 | 
			
		||||
    output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, q_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_kv,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_kv,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
 | 
			
		||||
    _, seq_len, _ = query_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        _, seq_len_past, _ = layer_past[0].shape
 | 
			
		||||
 | 
			
		||||
        seq_len = seq_len + seq_len_past
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_kv, q_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_kv, q_length, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = create_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_kv,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = create_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_kv,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size*self.num_kv, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size*self.num_kv, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache is True:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        key_layer_ = key_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
        value_layer_ = value_layer.reshape(batch_size, self.num_kv, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        # attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
        #     query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
        # )
 | 
			
		||||
        if layer_past is not None:
 | 
			
		||||
            L = query_layer_.shape[-2]
 | 
			
		||||
            S = key_layer_.shape[-2]
 | 
			
		||||
            attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device)
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
        x = x.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"'output_attentions' are not supported yet")
 | 
			
		||||
        return outputs
 | 
			
		||||
    else:
 | 
			
		||||
        attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
            .masked_fill(attention_mask, -1e9).to(torch.bfloat16)
 | 
			
		||||
        matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        #  - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # attn_weights = torch. \
 | 
			
		||||
        # masked_fill(attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
 | 
			
		||||
        attention_probs = F.softmax(
 | 
			
		||||
            (attention_scores + alibi) * self.inv_norm_factor + attention_mask_float,
 | 
			
		||||
            dim=-1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
        )
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size x num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size * self.num_heads,
 | 
			
		||||
            q_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = attention_probs_reshaped @ value_layer
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            outputs += (attention_probs,)
 | 
			
		||||
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def rw_attention_forward_40b(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        alibi: torch.Tensor,
 | 
			
		||||
        attention_mask: torch.Tensor,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
        head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
        use_cache: bool=False,
 | 
			
		||||
        output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, q_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        q_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    # query_layer, key_layer = self.maybe_rotary(query_layer, key_layer)
 | 
			
		||||
    _, seq_len, _ = query_layer.shape
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        _, seq_len_past, _ = layer_past[0].shape
 | 
			
		||||
 | 
			
		||||
        seq_len = seq_len + seq_len_past
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, seq_len)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = create_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_heads,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = create_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size*self.num_heads, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache is True:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        key_layer_ = key_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        value_layer_ = value_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
        # attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
        #     query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
        # )
 | 
			
		||||
        if present is not None:
 | 
			
		||||
            L = query_layer_.shape[-2]
 | 
			
		||||
            S = key_layer_.shape[-2]
 | 
			
		||||
            attn_mask = torch.ones(L, S, dtype=torch.bool, device=query_layer_.device)
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, attn_mask, 0.0, is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_, key_layer_, value_layer_, None, 0.0, is_causal=True
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        x = attn_output.view(batch_size, self.num_heads, q_length, self.head_dim)
 | 
			
		||||
        x = x.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = x.reshape(batch_size, q_length, self.num_heads * self.head_dim)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            invalidInputError(False,
 | 
			
		||||
                              f"'output_attentions' are not supported yet")
 | 
			
		||||
        return outputs
 | 
			
		||||
    else:
 | 
			
		||||
        attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
            .masked_fill(attention_mask, -1e9).to(torch.bfloat16)
 | 
			
		||||
        matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(batch_size, self.num_heads, q_length, kv_length)
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        # - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # attn_weights = torch \
 | 
			
		||||
        # .masked_fill(
 | 
			
		||||
        # attention_scores, attention_mask, torch.finfo(attention_scores.dtype).min)
 | 
			
		||||
        attention_probs = F.softmax(
 | 
			
		||||
            (attention_scores + alibi.view(batch_size, self.num_heads, 1, -1))
 | 
			
		||||
            * self.inv_norm_factor + attention_mask_float,
 | 
			
		||||
            dim=-1,
 | 
			
		||||
            dtype=hidden_states.dtype,
 | 
			
		||||
        )
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size x num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size * self.num_heads,
 | 
			
		||||
            q_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = attention_probs_reshaped @ value_layer
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        outputs = (output_tensor, present)
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            outputs += (attention_probs,)
 | 
			
		||||
        return outputs
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def falcon_attention_forward(
 | 
			
		||||
        self,
 | 
			
		||||
        hidden_states: torch.Tensor,
 | 
			
		||||
        alibi: Optional[torch.Tensor],
 | 
			
		||||
        attention_mask: torch.Tensor,
 | 
			
		||||
        layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
			
		||||
        head_mask: Optional[torch.Tensor]=None,
 | 
			
		||||
        use_cache: bool=False,
 | 
			
		||||
        output_attentions: bool=False,
 | 
			
		||||
):
 | 
			
		||||
    # [batch_size, seq_length, 3 x hidden_size]
 | 
			
		||||
    fused_qkv = self.query_key_value(hidden_states)
 | 
			
		||||
    num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
 | 
			
		||||
    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
			
		||||
    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
			
		||||
 | 
			
		||||
    batch_size, query_length, _, _ = query_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * self.num_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
    key_layer = key_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * num_kv_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim,
 | 
			
		||||
    )
 | 
			
		||||
    value_layer = value_layer.transpose(1, 2).reshape(
 | 
			
		||||
        batch_size * num_kv_heads,
 | 
			
		||||
        query_length,
 | 
			
		||||
        self.head_dim
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    past_kv_length = 0 if layer_past is None else layer_past[0].shape[1]
 | 
			
		||||
    query_layer, key_layer = self.maybe_rotary(query_layer, key_layer, past_kv_length)
 | 
			
		||||
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
    device = hidden_states.device
 | 
			
		||||
    if layer_past is not None:
 | 
			
		||||
        # reuse k, v, self_attention
 | 
			
		||||
        cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
			
		||||
            # allocate new
 | 
			
		||||
            new_cache_k, new_cache_v = create_kv_cache(
 | 
			
		||||
                batch_size,
 | 
			
		||||
                self.num_heads,
 | 
			
		||||
                self.head_dim,
 | 
			
		||||
                cache_k.size(2),
 | 
			
		||||
                kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
			
		||||
                dtype=cache_k.dtype,
 | 
			
		||||
                device=device
 | 
			
		||||
            )
 | 
			
		||||
            new_cache_k[:] = cache_k
 | 
			
		||||
            new_cache_v[:] = cache_v
 | 
			
		||||
            cache_k = new_cache_k
 | 
			
		||||
            cache_v = new_cache_v
 | 
			
		||||
 | 
			
		||||
        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
			
		||||
 | 
			
		||||
    elif use_cache:
 | 
			
		||||
        max_cache_length = kv_length + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
			
		||||
        new_key_states, new_value_states = create_kv_cache(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            self.head_dim,
 | 
			
		||||
            kv_length,
 | 
			
		||||
            max_cache_length,
 | 
			
		||||
            dtype=key_layer.dtype,
 | 
			
		||||
            device=device
 | 
			
		||||
        )
 | 
			
		||||
        new_key_states[:] = key_layer
 | 
			
		||||
        new_value_states[:] = value_layer
 | 
			
		||||
        key_layer = new_key_states
 | 
			
		||||
        value_layer = new_value_states
 | 
			
		||||
 | 
			
		||||
    query_layer = query_layer.view(batch_size * self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer = key_layer.view(batch_size * self.num_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer = value_layer.view(batch_size * self.num_heads, -1, self.head_dim)
 | 
			
		||||
    _, kv_length, _ = key_layer.shape
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        present = (key_layer, value_layer)
 | 
			
		||||
    else:
 | 
			
		||||
        present = None
 | 
			
		||||
 | 
			
		||||
    attention_mask_float = (attention_mask * 1.0) \
 | 
			
		||||
        .masked_fill(attention_mask, float("-1e9")).to(query_layer.dtype)
 | 
			
		||||
 | 
			
		||||
    query_layer_ = query_layer.reshape(batch_size, self.num_heads, -1, self.head_dim)
 | 
			
		||||
    key_layer_ = key_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
    value_layer_ = value_layer.reshape(batch_size, num_kv_heads, -1, self.head_dim)
 | 
			
		||||
 | 
			
		||||
    if alibi is None:
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            # F.scaled_dot_product_attention doesn't return the attention weights, so we have
 | 
			
		||||
            # to do it by hand if we want them
 | 
			
		||||
            attention_scores = query_layer_ @ key_layer_.transpose(-1, -2)
 | 
			
		||||
            attention_scores /= math.sqrt(self.head_dim)
 | 
			
		||||
 | 
			
		||||
            attention_scores = F.softmax(
 | 
			
		||||
                attention_scores + attention_mask_float, dim=-1, dtype=hidden_states.dtype
 | 
			
		||||
            )
 | 
			
		||||
            attn_output = attention_scores @ value_layer_
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = F.scaled_dot_product_attention(
 | 
			
		||||
                query_layer_,
 | 
			
		||||
                key_layer_,
 | 
			
		||||
                value_layer_,
 | 
			
		||||
                attention_mask_float,
 | 
			
		||||
                0.0,
 | 
			
		||||
                is_causal=False
 | 
			
		||||
            )
 | 
			
		||||
            attention_scores = None
 | 
			
		||||
 | 
			
		||||
        attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
			
		||||
        attn_output = attn_output.permute(0, 2, 1, 3)
 | 
			
		||||
        attn_output = attn_output.reshape(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            query_length,
 | 
			
		||||
            self.num_heads * self.head_dim
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(attn_output)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return output_tensor, present, attention_scores
 | 
			
		||||
        else:
 | 
			
		||||
            return output_tensor, present
 | 
			
		||||
 | 
			
		||||
    else:
 | 
			
		||||
        matmul_result = query_layer_ @ key_layer_.transpose(-1, -2)
 | 
			
		||||
 | 
			
		||||
        # change view to [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_scores = matmul_result.view(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            query_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # cast attention scores to fp32,
 | 
			
		||||
        # compute scaled softmax and cast back to initial dtype
 | 
			
		||||
        # - [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        input_dtype = attention_scores.dtype
 | 
			
		||||
        # `float16` has a minimum value of -65504.0,
 | 
			
		||||
        # whereas `bfloat16` and `float32` have a minimum value of `-3.4e+38`
 | 
			
		||||
        if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
			
		||||
            attention_scores = attention_scores.to(torch.float32)
 | 
			
		||||
        # Matt (HF) note: We could possibly use F.scaled_dot_product_attention here too, by
 | 
			
		||||
        # adding (alibi * self.inv_norm_factor) to attention_mask_float.
 | 
			
		||||
        # I think this would be mathematically
 | 
			
		||||
        # equivalent and more performant, but there might be a numerical difference.
 | 
			
		||||
        # If you're reading this
 | 
			
		||||
        # and you'd like to experiment and maybe file a PR, feel free!
 | 
			
		||||
        attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
 | 
			
		||||
        attention_logits *= self.inv_norm_factor
 | 
			
		||||
        attention_probs = F.softmax(attention_logits + attention_mask_float, dim=-1,
 | 
			
		||||
                                    dtype=hidden_states.dtype)
 | 
			
		||||
        # [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs = self.attention_dropout(attention_probs)
 | 
			
		||||
 | 
			
		||||
        if head_mask is not None:
 | 
			
		||||
            attention_probs = attention_probs * head_mask
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, num_heads, q_length, kv_length]
 | 
			
		||||
        attention_probs_reshaped = attention_probs.view(
 | 
			
		||||
            batch_size,
 | 
			
		||||
            self.num_heads,
 | 
			
		||||
            query_length,
 | 
			
		||||
            kv_length
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
			
		||||
        context_layer = (attention_probs_reshaped @ value_layer_).flatten(0, 1)
 | 
			
		||||
 | 
			
		||||
        # change view [batch_size, q_length, num_heads * head_dim]
 | 
			
		||||
        context_layer = self._merge_heads(context_layer)
 | 
			
		||||
 | 
			
		||||
        output_tensor = self.dense(context_layer)
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            return output_tensor, present, attention_probs
 | 
			
		||||
        else:
 | 
			
		||||
            return output_tensor, present
 | 
			
		||||
		Loading…
	
		Reference in a new issue