use fused mlp in baichuan2 (#9620)

This commit is contained in:
Yishuo Wang 2023-12-07 15:50:57 +08:00 committed by GitHub
parent deee65785c
commit 7319f2c227
2 changed files with 25 additions and 0 deletions

View file

@ -485,6 +485,7 @@ def _optimize_post(model, lightweight_bmm=False):
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.baichuan2 import baichuan_attention_forward_7b
from bigdl.llm.transformers.models.baichuan2 import baichuan_mlp_forward
convert_forward(model,
module.Attention,
baichuan_attention_forward_7b
@ -492,12 +493,16 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.RMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MLP,
baichuan_mlp_forward)
elif model.config.hidden_size == 5120:
# baichuan2-13B
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)
from bigdl.llm.transformers.models.baichuan2 import baichuan_attention_forward_13b
from bigdl.llm.transformers.models.baichuan2 import baichuan_13b_rms_norm_forward
from bigdl.llm.transformers.models.baichuan2 import baichuan_mlp_forward
convert_forward(model,
module.BaichuanAttention,
baichuan_attention_forward_13b
@ -506,6 +511,9 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.RMSNorm,
baichuan_13b_rms_norm_forward)
convert_forward(model,
module.MLP,
baichuan_mlp_forward)
elif model.config.model_type == "baichuan":
# baichuan1
if model.config.hidden_size == 4096:

View file

@ -70,6 +70,23 @@ def baichuan_13b_rms_norm_forward(self, hidden_states):
return self.weight * hidden_states.to(input_dtype)
def baichuan_mlp_forward(
self,
x: torch.Tensor,
) -> torch.Tensor:
if x.shape[1] == 1 and x.dtype == torch.float32 and x.device.type == 'xpu' \
and not (self.training and x.requires_grad):
import linear_q4_0
x_2d = x.view(-1, x.shape[-1])
if not x_2d.is_contiguous():
x_2d = x_2d.contiguous()
return self.down_proj(linear_q4_0.mlp_forward_q4_0_xpu(
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_len,
))
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
def baichuan_attention_forward_7b(
self,
hidden_states: torch.Tensor,