[LLM] Replace Embedding layer to fix it on CPU (#9254)
This commit is contained in:
parent
e1bc18f8eb
commit
726203d778
4 changed files with 59 additions and 7 deletions
|
|
@ -192,7 +192,8 @@ def load_low_bit(model, model_path):
|
|||
return model
|
||||
|
||||
|
||||
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None):
|
||||
def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_convert=None,
|
||||
replace_embedding=False):
|
||||
"""
|
||||
A method to optimize any pytorch model.
|
||||
|
||||
|
|
@ -202,6 +203,8 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
|
|||
:param optimize_llm: Whether to further optimize llm model.
|
||||
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped
|
||||
when conducting model optimizations. Default to be None.
|
||||
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
|
||||
:return: The optimized model.
|
||||
|
||||
|
|
@ -227,7 +230,8 @@ def optimize_model(model, low_bit='sym_int4', optimize_llm=True, modules_to_not_
|
|||
model = ggml_convert_low_bit(model,
|
||||
qtype=qtype,
|
||||
optimize_model=optimize_llm,
|
||||
modules_to_not_convert=modules_to_not_convert)
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
# add save_low_bit to pretrained model dynamically
|
||||
import types
|
||||
model._bigdl_config = dict()
|
||||
|
|
|
|||
|
|
@ -35,6 +35,7 @@
|
|||
# limitations under the License.
|
||||
|
||||
|
||||
import platform
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from accelerate import init_empty_weights
|
||||
|
|
@ -82,8 +83,10 @@ def is_linear_module(module):
|
|||
|
||||
|
||||
def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
||||
current_key_name=None, convert_shape_only=False):
|
||||
current_key_name=None, convert_shape_only=False,
|
||||
replace_embedding=False):
|
||||
from bigdl.llm.transformers.low_bit_linear import LowBitLinear, FP4Params, FP16Linear
|
||||
from bigdl.llm.transformers.embedding import LLMEmbedding
|
||||
has_been_replaced = False
|
||||
|
||||
for name, module in model.named_children():
|
||||
|
|
@ -147,6 +150,19 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
model._modules[name].requires_grad_(False)
|
||||
|
||||
module.weight = None
|
||||
elif replace_embedding and type(module) == nn.Embedding:
|
||||
# skip user-defined Embedding layer
|
||||
if platform.system().lower() == 'windows':
|
||||
model._modules[name] = LLMEmbedding(
|
||||
num_embeddings=module.num_embeddings,
|
||||
embedding_dim=module.embedding_dim,
|
||||
padding_idx=module.padding_idx,
|
||||
max_norm=module.max_norm,
|
||||
norm_type=module.norm_type,
|
||||
scale_grad_by_freq=module.scale_grad_by_freq,
|
||||
sparse=module.sparse,
|
||||
_weight=module.weight.data,
|
||||
)
|
||||
|
||||
# Remove the last key for recursion
|
||||
if len(list(module.children())) > 0:
|
||||
|
|
@ -156,6 +172,7 @@ def _replace_with_low_bit_linear(model, qtype, modules_to_not_convert=None,
|
|||
modules_to_not_convert,
|
||||
current_key_name,
|
||||
convert_shape_only,
|
||||
replace_embedding,
|
||||
)
|
||||
has_been_replaced = _flag or has_been_replaced
|
||||
return model, has_been_replaced
|
||||
|
|
@ -185,7 +202,7 @@ def _optimize_pre(model):
|
|||
|
||||
def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
||||
convert_shape_only=False, device="cpu",
|
||||
modules_to_not_convert=None):
|
||||
modules_to_not_convert=None, replace_embedding=False):
|
||||
logger.info(f"Converting the current model to "
|
||||
f"{list(ggml_tensor_qtype.keys())[list(ggml_tensor_qtype.values()).index(qtype)]} "
|
||||
f"format......")
|
||||
|
|
@ -196,7 +213,7 @@ def ggml_convert_low_bit(model, qtype, optimize_model=True,
|
|||
|
||||
model, has_been_replaced = _replace_with_low_bit_linear(
|
||||
model, qtype, modules_to_not_convert,
|
||||
None, convert_shape_only,
|
||||
None, convert_shape_only, replace_embedding,
|
||||
)
|
||||
if not has_been_replaced:
|
||||
warnings.warn(
|
||||
|
|
|
|||
25
python/llm/src/bigdl/llm/transformers/embedding.py
Normal file
25
python/llm/src/bigdl/llm/transformers/embedding.py
Normal file
|
|
@ -0,0 +1,25 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
class LLMEmbedding(torch.nn.Embedding):
|
||||
def forward(self, x: Tensor):
|
||||
x_shape = x.shape
|
||||
return self.weight[x.reshape(-1)].reshape(*x_shape, -1)
|
||||
|
|
@ -68,6 +68,8 @@ class _BaseAutoModelClass:
|
|||
Default to be True.
|
||||
:param modules_to_not_convert: list of str value, modules (nn.Module) that are skipped when
|
||||
conducting model optimizations. Default to be None.
|
||||
:param replace_embedding: Whether to replace the Embedding layer, may need to set it
|
||||
to `True` when running BigDL-LLM on GPU on Windows. Default to be `False`.
|
||||
|
||||
:return: a model instance
|
||||
"""
|
||||
|
|
@ -118,6 +120,7 @@ class _BaseAutoModelClass:
|
|||
# `from_pretrained`` may pop items out in dict
|
||||
# and lead to args missing.
|
||||
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||
replace_embedding = kwargs.pop("replace_embedding", False)
|
||||
_args = copy.deepcopy(args)
|
||||
_kwargs = copy.deepcopy(kwargs)
|
||||
try:
|
||||
|
|
@ -130,7 +133,8 @@ class _BaseAutoModelClass:
|
|||
model.config.update({"bigdl_lcmu_enabled": False})
|
||||
model = model.to("cpu")
|
||||
model = ggml_convert_low_bit(model, qtype, optimize_model,
|
||||
modules_to_not_convert=modules_to_not_convert)
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
model.config.update({"bigdl_transformers_low_bit": q_k})
|
||||
model.config.update({"tie_word_embeddings": False})
|
||||
|
||||
|
|
@ -167,6 +171,7 @@ class _BaseAutoModelClass:
|
|||
import os
|
||||
|
||||
modules_to_not_convert = kwargs.pop("modules_to_not_convert", None)
|
||||
replace_embedding = kwargs.pop("replace_embedding", False)
|
||||
# Autofactory
|
||||
trust_remote_code = kwargs.pop("trust_remote_code", None)
|
||||
kwargs_orig = copy.deepcopy(kwargs)
|
||||
|
|
@ -277,7 +282,8 @@ class _BaseAutoModelClass:
|
|||
# Loading args may differ based on their usage
|
||||
quant_device = "meta" if bigdl_lcmu_enabled else "cpu"
|
||||
model = ggml_convert_low_bit(model, qtype, optimize_model, device=quant_device,
|
||||
modules_to_not_convert=modules_to_not_convert)
|
||||
modules_to_not_convert=modules_to_not_convert,
|
||||
replace_embedding=replace_embedding)
|
||||
|
||||
if is_sharded:
|
||||
loaded_state_dict_keys = sharded_metadata["all_checkpoint_keys"]
|
||||
|
|
|
|||
Loading…
Reference in a new issue