LLM: update langchain and cpp-python style API examples (#8456)

This commit is contained in:
binbin Deng 2023-07-06 14:36:42 +08:00 committed by GitHub
parent 16c795158d
commit 70bc8ea8ae
6 changed files with 54 additions and 19 deletions

View file

@ -0,0 +1,28 @@
# BigDL-LLM INT4 Inference Using Llama-Cpp-Python Format API
In this example, we show how to run inference on converted INT4 model using llama-cpp-python format API.
> **Note**: Currently model family LLaMA, GPT-NeoX, BLOOM and StarCoder are supported.
## Prepare Environment
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
pip install --pre --upgrade bigdl-llm[all]
```
## Convert Models using bigdl-llm
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
## Run the example
```bash
python ./int4_inference.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -p PROMPT -t THREAD_NUM
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox`, `bloom` and `starcoder`
- `-p PROMPT`: question to ask. Default is `What is AI?`.
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.

View file

@ -36,6 +36,9 @@ def main(args):
if model_family == "gptneox":
from bigdl.llm.models import Gptneox
modelclass = Gptneox
if model_family == "starcoder":
from bigdl.llm.models import Starcoder
modelclass = Starcoder
model = modelclass(model_path, n_threads=n_threads)
response=model(prompt)
@ -44,6 +47,7 @@ def main(args):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Llama-CPP-Python style API Simple Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox", "starcoder"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')

View file

@ -3,7 +3,7 @@
The examples here shows how to use langchain with `bigdl-llm`.
## Install bigdl-llm
Follow the instructions in [bigdl-llm docs: Install]().
Follow the instructions in [Install](https://github.com/intel-analytics/BigDL/tree/main/python/llm#install).
## Install Required Dependencies for langchain examples.
@ -17,7 +17,7 @@ Note that typing_extensions==4.5.0 is required, or you may encounter error `Type
## Convert Models using bigdl-llm
Follow the instructions in [bigdl-llm docs: Convert Models]().
Follow the instructions in [Convert model](https://github.com/intel-analytics/BigDL/tree/main/python/llm#convert-model).
## Run the examples
@ -25,22 +25,22 @@ Follow the instructions in [bigdl-llm docs: Convert Models]().
### 1. Streaming Chat
```bash
python ./streamchat.py -m MODEL_PATH -x MODEL_FAMILY -t THREAD_NUM -q "What is AI?"
python ./streamchat.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -q QUESTION -t THREAD_NUM
```
arguments info:
- `-m MODEL_PATH`: path to the converted model
- `-x MODEL_FAMILY`: the model family of the model specified in `-m`, available options are `llama`, `gptneox`
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
- `-q QUESTION`: question to ask. Default is `What is AI?`.
- `-t THREAD_NUM`: required argument defining the number of threads to use for inference. Default is `2`.
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.
### 2. Question Answering over Docs
```bash
python ./docqa.py --t THREAD_NUM -m -x
python ./docqa.py -m CONVERTED_MODEL_PATH -x MODEL_FAMILY -i DOC_PATH -q QUESTION -c CONTEXT_SIZE -t THREAD_NUM
```
arguments info:
- `-m CONVERTED_MODEL_PATH`: path to the converted model in above step
- `-x MODEL_FAMILY`: the model family of the model specified in `-m`, available options are `llama`, `gptneox`
- `-q QUESTION `: question to ask, default question is `What is AI?`.
- `-t THREAD_NUM`: required argument defining the number of threads to use for inference. Default is `2`.
- `-m CONVERTED_MODEL_PATH`: **required**, path to the converted model in above step
- `-x MODEL_FAMILY`: **required**, the model family of the model specified in `-m`, available options are `llama`, `gptneox` and `bloom`
- `-i DOC_PATH`: **required**, path to the input document
- `-q QUESTION`: question to ask. Default is `What is AI?`.
- `-c CONTEXT_SIZE`: specify the maximum context size. Default is `2048`.
- `-t THREAD_NUM`: specify the number of threads to use for inference. Default is `2`.

View file

@ -71,17 +71,18 @@ def main(args):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Llama-CPP-Python style API Simple Example')
parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Question Answering over Docs Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')
parser.add_argument('-i', '--input-path', type=str,
parser.add_argument('-i', '--input-path', type=str, required=True,
help='the path to the input doc.')
parser.add_argument('-q', '--question', type=str, default='What is AI?',
help='qustion you want to ask.')
parser.add_argument('-c','--n-ctx', type=int, default=2048,
help='number of threads to use for inference')
help='the maximum context size')
parser.add_argument('-t','--thread-num', type=int, default=2,
help='number of threads to use for inference')
args = parser.parse_args()

View file

@ -56,8 +56,9 @@ def main(args):
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Llama-CPP-Python style API Simple Example')
parser = argparse.ArgumentParser(description='BigDL-LLM Langchain Streaming Chat Example')
parser.add_argument('-x','--model-family', type=str, required=True,
choices=["llama", "bloom", "gptneox"],
help='the model family')
parser.add_argument('-m','--model-path', type=str, required=True,
help='the path to the converted llm model')

View file

@ -95,6 +95,7 @@ def main():
parser.add_argument('--thread-num', type=int, default=2, required=True,
help='Number of threads to use for inference')
parser.add_argument('--model-family', type=str, default='llama', required=True,
choices=["llama", "bloom", "gptneox", "starcoder"],
help="The model family of the large language model (supported option: 'llama', "
"'gptneox', 'bloom', 'starcoder')")
parser.add_argument('--repo-id-or-model-path', type=str, required=True,