add sdp for gemma2 (#11677)
This commit is contained in:
		
							parent
							
								
									c11d5301d7
								
							
						
					
					
						commit
						6f999e6e90
					
				
					 3 changed files with 87 additions and 23 deletions
				
			
		| 
						 | 
				
			
			@ -1512,9 +1512,12 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
			
		|||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
        from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
 | 
			
		||||
        from ipex_llm.transformers.models.gemma2 import gemma2_attention_forward
 | 
			
		||||
        from ipex_llm.transformers.models.gemma2 import gemma2_model_forward
 | 
			
		||||
        from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2Attention
 | 
			
		||||
        from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
 | 
			
		||||
        convert_forward(model, Gemma2RMSNorm, gemma_rms_norm_forward)
 | 
			
		||||
        convert_forward(model, Gemma2Attention, gemma2_attention_forward)
 | 
			
		||||
        convert_forward(model, Gemma2Model, gemma2_model_forward)
 | 
			
		||||
    elif model.config.model_type == "Yi":
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
        module = importlib.import_module(modeling_module_name)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -31,14 +31,13 @@
 | 
			
		|||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
 | 
			
		||||
import torch
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, use_sdp, use_sdp_causal
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.gemma2.modeling_gemma2 import Gemma2Attention
 | 
			
		||||
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2Attention
 | 
			
		||||
from transformers.models.gemma2.modeling_gemma2 import repeat_kv, apply_rotary_pos_emb
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -46,6 +45,46 @@ def merge_qkv(module: torch.nn.Module):
 | 
			
		|||
    return merge_qkv_base(module, Gemma2Attention)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gemma2_model_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[Cache] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
):
 | 
			
		||||
    # ipex-llm change start: add kv_seq_len in past_key_values
 | 
			
		||||
    if past_key_values is not None:
 | 
			
		||||
        if cache_position is not None:
 | 
			
		||||
            kv_seq_len = cache_position[-1].item() + 1
 | 
			
		||||
        else:
 | 
			
		||||
            if input_ids is not None:
 | 
			
		||||
                kv_seq_len = input_ids.size(1)
 | 
			
		||||
            else:
 | 
			
		||||
                kv_seq_len = inputs_embeds.size(1)
 | 
			
		||||
        past_key_values.kv_seq_len = kv_seq_len
 | 
			
		||||
    # ipex-llm change end
 | 
			
		||||
 | 
			
		||||
    return Gemma2Model.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
        cache_position=cache_position
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def gemma2_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			@ -86,6 +125,28 @@ def gemma2_attention_forward(
 | 
			
		|||
        key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                         self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
    # IPEX_LLM OPT: sdp
 | 
			
		||||
    kv_seq_len = q_len if past_key_value is None else past_key_value.kv_seq_len
 | 
			
		||||
    if (use_sdp_causal(q_len, kv_seq_len, -1, query_states, self.training)
 | 
			
		||||
            and kv_seq_len <= key_states.size(2)):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        attn_output = xe_addons.gemma2_sdp_causal(query_states,
 | 
			
		||||
                                                  key_states[:, :, :kv_seq_len, :],
 | 
			
		||||
                                                  value_states[:, :, :kv_seq_len, :],
 | 
			
		||||
                                                  attention_mask[:, :, :q_len, :kv_seq_len],
 | 
			
		||||
                                                  self.config.attn_logit_softcapping,
 | 
			
		||||
                                                  self.scaling)
 | 
			
		||||
    elif use_sdp(q_len, kv_seq_len, -1, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        attn_weights = None
 | 
			
		||||
        attn_output = xe_addons.gemma2_sdp(query_states,
 | 
			
		||||
                                           key_states[:, :, :kv_seq_len, :],
 | 
			
		||||
                                           value_states[:, :, :kv_seq_len, :],
 | 
			
		||||
                                           attention_mask[:, :, :q_len, :kv_seq_len],
 | 
			
		||||
                                           self.config.attn_logit_softcapping,
 | 
			
		||||
                                           self.scaling)
 | 
			
		||||
    else:
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -101,10 +162,10 @@ def gemma2_attention_forward(
 | 
			
		|||
            attn_weights = attn_weights + causal_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
    attn_weights = torch.nn.functional.softmax(attn_weights,
 | 
			
		||||
                                               dim=-1, dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
    attn_weights = torch.nn.functional.dropout(attn_weights,
 | 
			
		||||
                                               p=self.attention_dropout, training=self.training)
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                   training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -329,7 +329,7 @@ def use_sdp(q_len, kv_len, head_dim, query_states):
 | 
			
		|||
    return (
 | 
			
		||||
        query_states.device.type == "xpu"
 | 
			
		||||
        and query_states.dtype in [torch.float, torch.half]     # fp32/fp16
 | 
			
		||||
        and head_dim in [64, 80, 96, 128]
 | 
			
		||||
        and head_dim in [-1, 64, 80, 96, 128]
 | 
			
		||||
        and q_len != kv_len     # next token
 | 
			
		||||
        and q_len <= 32         # lookup
 | 
			
		||||
    )
 | 
			
		||||
| 
						 | 
				
			
			@ -347,7 +347,7 @@ def use_sdp_fp8(q_len, kv_len, query_states):
 | 
			
		|||
def use_sdp_causal(q_len, kv_len, head_dim, query_states, training):
 | 
			
		||||
    return (
 | 
			
		||||
        q_len == kv_len     # first token
 | 
			
		||||
        and head_dim in [64, 80, 96, 128]           # for now
 | 
			
		||||
        and head_dim in [-1, 64, 80, 96, 128]           # for now
 | 
			
		||||
        and query_states.device.type == "xpu"   # GPU
 | 
			
		||||
        and query_states.dtype in [torch.float, torch.half]     # fp32/fp16
 | 
			
		||||
        and not query_states.requires_grad and not training     # not training
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue