add sdp for gemma2 (#11677)

This commit is contained in:
Yishuo Wang 2024-07-29 15:15:47 +08:00 committed by GitHub
parent c11d5301d7
commit 6f999e6e90
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 87 additions and 23 deletions

View file

@ -1512,9 +1512,12 @@ def _optimize_post(model, lightweight_bmm=False):
module = importlib.import_module(modeling_module_name)
from ipex_llm.transformers.models.gemma import gemma_rms_norm_forward
from ipex_llm.transformers.models.gemma2 import gemma2_attention_forward
from ipex_llm.transformers.models.gemma2 import gemma2_model_forward
from transformers.models.gemma2.modeling_gemma2 import Gemma2RMSNorm, Gemma2Attention
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model
convert_forward(model, Gemma2RMSNorm, gemma_rms_norm_forward)
convert_forward(model, Gemma2Attention, gemma2_attention_forward)
convert_forward(model, Gemma2Model, gemma2_model_forward)
elif model.config.model_type == "Yi":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -31,14 +31,13 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple
import torch
from ipex_llm.utils.common import invalidInputError
from typing import Optional, Tuple
from ipex_llm.transformers.models.common import merge_qkv_base
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import should_use_fuse_rope, use_sdp, use_sdp_causal
from transformers.cache_utils import Cache
from transformers.models.gemma2.modeling_gemma2 import Gemma2Attention
from transformers.models.gemma2.modeling_gemma2 import Gemma2Model, Gemma2Attention
from transformers.models.gemma2.modeling_gemma2 import repeat_kv, apply_rotary_pos_emb
@ -46,6 +45,46 @@ def merge_qkv(module: torch.nn.Module):
return merge_qkv_base(module, Gemma2Attention)
def gemma2_model_forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
):
# ipex-llm change start: add kv_seq_len in past_key_values
if past_key_values is not None:
if cache_position is not None:
kv_seq_len = cache_position[-1].item() + 1
else:
if input_ids is not None:
kv_seq_len = input_ids.size(1)
else:
kv_seq_len = inputs_embeds.size(1)
past_key_values.kv_seq_len = kv_seq_len
# ipex-llm change end
return Gemma2Model.forward(
self=self,
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
cache_position=cache_position
)
def gemma2_attention_forward(
self,
hidden_states: torch.Tensor,
@ -86,26 +125,48 @@ def gemma2_attention_forward(
key_states, value_states = past_key_value.update(key_states, value_states,
self.layer_idx, cache_kwargs)
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
# IPEX_LLM OPT: sdp
kv_seq_len = q_len if past_key_value is None else past_key_value.kv_seq_len
if (use_sdp_causal(q_len, kv_seq_len, -1, query_states, self.training)
and kv_seq_len <= key_states.size(2)):
import xe_addons
attn_weights = None
attn_output = xe_addons.gemma2_sdp_causal(query_states,
key_states[:, :, :kv_seq_len, :],
value_states[:, :, :kv_seq_len, :],
attention_mask[:, :, :q_len, :kv_seq_len],
self.config.attn_logit_softcapping,
self.scaling)
elif use_sdp(q_len, kv_seq_len, -1, query_states):
import xe_addons
attn_weights = None
attn_output = xe_addons.gemma2_sdp(query_states,
key_states[:, :, :kv_seq_len, :],
value_states[:, :, :kv_seq_len, :],
attention_mask[:, :, :q_len, :kv_seq_len],
self.config.attn_logit_softcapping,
self.scaling)
else:
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) * self.scaling
if self.config.attn_logit_softcapping is not None:
attn_weights = attn_weights / self.config.attn_logit_softcapping
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * self.config.attn_logit_softcapping
if self.config.attn_logit_softcapping is not None:
attn_weights = attn_weights / self.config.attn_logit_softcapping
attn_weights = torch.tanh(attn_weights)
attn_weights = attn_weights * self.config.attn_logit_softcapping
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
if attention_mask is not None: # no matter the length, we just slice it
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = attn_weights + causal_mask
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights,
dim=-1, dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights,
p=self.attention_dropout, training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
# upcast attention to fp32
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
dtype=torch.float32).to(query_states.dtype)
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
training=self.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()

View file

@ -329,7 +329,7 @@ def use_sdp(q_len, kv_len, head_dim, query_states):
return (
query_states.device.type == "xpu"
and query_states.dtype in [torch.float, torch.half] # fp32/fp16
and head_dim in [64, 80, 96, 128]
and head_dim in [-1, 64, 80, 96, 128]
and q_len != kv_len # next token
and q_len <= 32 # lookup
)
@ -347,7 +347,7 @@ def use_sdp_fp8(q_len, kv_len, query_states):
def use_sdp_causal(q_len, kv_len, head_dim, query_states, training):
return (
q_len == kv_len # first token
and head_dim in [64, 80, 96, 128] # for now
and head_dim in [-1, 64, 80, 96, 128] # for now
and query_states.device.type == "xpu" # GPU
and query_states.dtype in [torch.float, torch.half] # fp32/fp16
and not query_states.requires_grad and not training # not training