refactor glm edge (#12588)
This commit is contained in:
		
							parent
							
								
									b0338c5529
								
							
						
					
					
						commit
						6ea8033635
					
				
					 1 changed files with 8 additions and 44 deletions
				
			
		| 
						 | 
				
			
			@ -37,12 +37,12 @@ import torch
 | 
			
		|||
 | 
			
		||||
from typing import Optional, Tuple
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
 | 
			
		||||
from transformers.models.glm.modeling_glm import apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
 | 
			
		||||
from ipex_llm.transformers.models.common import merge_qkv_base
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def merge_qkv(module: torch.nn.Module):
 | 
			
		||||
| 
						 | 
				
			
			@ -102,52 +102,16 @@ def glm_attention_forward(
 | 
			
		|||
    else:
 | 
			
		||||
        query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | 
			
		||||
 | 
			
		||||
    use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
 | 
			
		||||
    # sin and cos are specific to RoPE models; cache_position needed for the static cache
 | 
			
		||||
    cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
 | 
			
		||||
    key_states, value_states = past_key_value.update(key_states, value_states,
 | 
			
		||||
                                                     self.layer_idx, cache_kwargs)
 | 
			
		||||
 | 
			
		||||
    kv_seq_len = key_states.size(-2)
 | 
			
		||||
    if attention_mask is not None:  # no matter the length, we just slice it
 | 
			
		||||
        attention_mask = attention_mask[:, :, :, : kv_seq_len]
 | 
			
		||||
 | 
			
		||||
    if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
 | 
			
		||||
                                            attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp(query_states, key_states, value_states,
 | 
			
		||||
                                        attention_mask)
 | 
			
		||||
    elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
 | 
			
		||||
        import xe_addons
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
 | 
			
		||||
                                                   value_states, attention_mask)
 | 
			
		||||
        else:
 | 
			
		||||
            attn_output = xe_addons.sdp_causal(query_states, key_states,
 | 
			
		||||
                                               value_states, attention_mask)
 | 
			
		||||
    else:
 | 
			
		||||
        if use_quantizekv:
 | 
			
		||||
            key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
 | 
			
		||||
                                                            query_states.dtype)
 | 
			
		||||
        # repeat k/v heads if n_kv_heads < n_heads
 | 
			
		||||
        key_states = repeat_kv(key_states, self.num_key_value_groups)
 | 
			
		||||
        value_states = repeat_kv(value_states, self.num_key_value_groups)
 | 
			
		||||
 | 
			
		||||
        attn_weights = torch.matmul(query_states,
 | 
			
		||||
                                    key_states.transpose(2, 3)) * self.scaling
 | 
			
		||||
 | 
			
		||||
        if attention_mask is not None:
 | 
			
		||||
            attn_weights = attn_weights + attention_mask
 | 
			
		||||
 | 
			
		||||
        # upcast attention to fp32
 | 
			
		||||
        attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
 | 
			
		||||
                                                   dtype=torch.float32).to(query_states.dtype)
 | 
			
		||||
        attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
 | 
			
		||||
                                                   training=self.training)
 | 
			
		||||
        attn_output = torch.matmul(attn_weights, value_states)
 | 
			
		||||
    attn_weights = None
 | 
			
		||||
    attn_output = scaled_dot_product_attention(
 | 
			
		||||
        query_states, key_states, value_states,
 | 
			
		||||
        attention_mask, q_len == key_states.size(2), self.scaling
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    attn_output = attn_output.transpose(1, 2).contiguous()
 | 
			
		||||
    attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue