refactor glm edge (#12588)
This commit is contained in:
parent
b0338c5529
commit
6ea8033635
1 changed files with 8 additions and 44 deletions
|
|
@ -37,12 +37,12 @@ import torch
|
||||||
|
|
||||||
from typing import Optional, Tuple
|
from typing import Optional, Tuple
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
from transformers.models.glm.modeling_glm import repeat_kv, apply_rotary_pos_emb
|
from transformers.models.glm.modeling_glm import apply_rotary_pos_emb
|
||||||
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
from ipex_llm.transformers.kv import DynamicNormalCache, DynamicFp8Cache
|
||||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
|
from ipex_llm.transformers.models.utils import make_cache_contiguous_inplaced
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache
|
||||||
|
|
||||||
|
|
||||||
def merge_qkv(module: torch.nn.Module):
|
def merge_qkv(module: torch.nn.Module):
|
||||||
|
|
@ -102,52 +102,16 @@ def glm_attention_forward(
|
||||||
else:
|
else:
|
||||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
||||||
|
|
||||||
use_quantizekv = isinstance(past_key_value, DynamicFp8Cache)
|
|
||||||
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
||||||
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
||||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||||
self.layer_idx, cache_kwargs)
|
self.layer_idx, cache_kwargs)
|
||||||
|
|
||||||
kv_seq_len = key_states.size(-2)
|
attn_weights = None
|
||||||
if attention_mask is not None: # no matter the length, we just slice it
|
attn_output = scaled_dot_product_attention(
|
||||||
attention_mask = attention_mask[:, :, :, : kv_seq_len]
|
query_states, key_states, value_states,
|
||||||
|
attention_mask, q_len == key_states.size(2), self.scaling
|
||||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
)
|
||||||
import xe_addons
|
|
||||||
if use_quantizekv:
|
|
||||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
|
||||||
attention_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
|
||||||
attention_mask)
|
|
||||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
|
||||||
import xe_addons
|
|
||||||
if use_quantizekv:
|
|
||||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
|
||||||
value_states, attention_mask)
|
|
||||||
else:
|
|
||||||
if use_quantizekv:
|
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
|
||||||
query_states.dtype)
|
|
||||||
# repeat k/v heads if n_kv_heads < n_heads
|
|
||||||
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
||||||
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
||||||
|
|
||||||
attn_weights = torch.matmul(query_states,
|
|
||||||
key_states.transpose(2, 3)) * self.scaling
|
|
||||||
|
|
||||||
if attention_mask is not None:
|
|
||||||
attn_weights = attn_weights + attention_mask
|
|
||||||
|
|
||||||
# upcast attention to fp32
|
|
||||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
|
||||||
dtype=torch.float32).to(query_states.dtype)
|
|
||||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
|
||||||
training=self.training)
|
|
||||||
attn_output = torch.matmul(attn_weights, value_states)
|
|
||||||
|
|
||||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue