use apply_rotary_pos_emb_cache_freq_xpu in mixtral (#10060)
* use apply_rotary_pos_emb_cache_freq_xpu in mixtral * fix style
This commit is contained in:
parent
aae20d728e
commit
6e0f1a1e92
2 changed files with 12 additions and 6 deletions
|
|
@ -47,7 +47,7 @@ from bigdl.llm.ggml.quantize import ggml_tensor_qtype
|
||||||
from bigdl.llm.utils.common import invalidInputError
|
from bigdl.llm.utils.common import invalidInputError
|
||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
|
||||||
apply_rotary_pos_emb_no_cache_xpu, is_enough_kv_cache_room_4_36
|
apply_rotary_pos_emb_cache_freq_xpu, is_enough_kv_cache_room_4_36
|
||||||
from bigdl.llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
|
from bigdl.llm.transformers.models.mistral import should_use_fuse_rope, use_decoding_fast_path
|
||||||
from bigdl.llm.transformers.models.utils import use_flash_attention
|
from bigdl.llm.transformers.models.utils import use_flash_attention
|
||||||
from bigdl.llm.transformers.models.utils import mlp_fusion_check
|
from bigdl.llm.transformers.models.utils import mlp_fusion_check
|
||||||
|
|
@ -198,10 +198,16 @@ def mixtral_attention_forward(
|
||||||
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
|
||||||
if use_fuse_rope:
|
if use_fuse_rope:
|
||||||
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
key_states,
|
cos = cos.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
position_ids,
|
sin = sin.squeeze(1).squeeze(0) # [seq_len, dim]
|
||||||
"mixtral")
|
cos = cos[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||||
|
sin = sin[position_ids].unsqueeze(1) # [bs, 1, seq_len, dim]
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_cache_freq_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
sin,
|
||||||
|
cos,
|
||||||
|
"mixtral")
|
||||||
else:
|
else:
|
||||||
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
|
|
||||||
|
|
@ -186,7 +186,7 @@ def apply_rotary_pos_emb_cache_freq_xpu(q, k, sin, cos, model_family):
|
||||||
import linear_q4_0
|
import linear_q4_0
|
||||||
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
q_embed = torch.empty(q.shape, dtype=q.dtype, device=q.device)
|
||||||
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
k_embed = torch.empty(k.shape, dtype=k.dtype, device=k.device)
|
||||||
if model_family in ["qwen"]:
|
if model_family in ["qwen", "mixtral"]:
|
||||||
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
linear_q4_0.apply_rotary_embedding_half_q_and_k_cache_freq(q, k, sin, cos, q_embed, k_embed)
|
||||||
return q_embed, k_embed
|
return q_embed, k_embed
|
||||||
else:
|
else:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue