add voice assistant example (#8711)
This commit is contained in:
parent
4573ff7ffe
commit
6d1ca88aac
2 changed files with 178 additions and 0 deletions
|
|
@ -0,0 +1,47 @@
|
|||
# Voice Assistant
|
||||
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper and Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the following models:
|
||||
- [openai/whisper-small](https://huggingface.co/openai/whisper-small) and [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) as reference whisper models.
|
||||
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
|
||||
|
||||
## 0. Requirements
|
||||
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
|
||||
|
||||
## Example: Predict Tokens using `generate()` API
|
||||
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, then use the recoginzed text as the input for Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
|
||||
### 1. Install
|
||||
We suggest using conda to manage environment:
|
||||
```bash
|
||||
conda create -n llm python=3.9
|
||||
conda activate llm
|
||||
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
|
||||
# you can install specific ipex/torch version for your need
|
||||
pip install bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
|
||||
pip install librosa soundfile datasets
|
||||
pip install accelerate
|
||||
pip install SpeechRecognition sentencepiece colorama
|
||||
```
|
||||
### 2. Configures OneAPI environment variables
|
||||
```bash
|
||||
source /opt/intel/oneapi/setvars.sh
|
||||
```
|
||||
|
||||
### 3. Run
|
||||
|
||||
For optimal performance on Arc, it is recommended to set several environment variables.
|
||||
|
||||
```bash
|
||||
export USE_XETLA=OFF
|
||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
|
||||
```
|
||||
|
||||
```
|
||||
python ./generate.py --llama2-repo-id-or-model-path REPO_ID_OR_MODEL_PATH --whisper-repo-id-or-model-path REPO_ID_OR_MODEL_PATH --n-predict N_PREDICT
|
||||
```
|
||||
|
||||
Arguments info:
|
||||
- `--llama2-repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
|
||||
- `--whisper-repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-small'`.
|
||||
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
|
||||
|
||||
#### Sample Output
|
||||
Should be tested on a linux machine with microphone.
|
||||
|
|
@ -0,0 +1,131 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
|
||||
import os
|
||||
import torch
|
||||
import time
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
from bigdl.llm.transformers import AutoModelForCausalLM
|
||||
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
|
||||
from transformers import LlamaTokenizer
|
||||
import intel_extension_for_pytorch as ipex
|
||||
from transformers import WhisperProcessor
|
||||
from transformers import TextStreamer
|
||||
from colorama import Fore
|
||||
import speech_recognition as sr
|
||||
from datasets import load_dataset
|
||||
|
||||
|
||||
# you could tune the prompt based on your own model,
|
||||
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
|
||||
DEFAULT_SYSTEM_PROMPT = """\
|
||||
"""
|
||||
|
||||
def get_prompt(message: str, chat_history: list[tuple[str, str]],
|
||||
system_prompt: str) -> str:
|
||||
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
|
||||
# The first user input is _not_ stripped
|
||||
do_strip = False
|
||||
for user_input, response in chat_history:
|
||||
user_input = user_input.strip() if do_strip else user_input
|
||||
do_strip = True
|
||||
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
|
||||
message = message.strip() if do_strip else message
|
||||
texts.append(f'{message} [/INST]')
|
||||
return ''.join(texts)
|
||||
|
||||
def get_input_features(r):
|
||||
with sr.Microphone(device_index=1, sample_rate=16000) as source:
|
||||
print("Calibrating...")
|
||||
r.adjust_for_ambient_noise(source, duration=5)
|
||||
|
||||
print(Fore.YELLOW + "Listening now..." + Fore.RESET)
|
||||
try:
|
||||
audio = r.listen(source, timeout=5, phrase_time_limit=30)
|
||||
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
|
||||
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
|
||||
input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
|
||||
input_features = input_features.half().contiguous().to('xpu')
|
||||
print("Recognizing...")
|
||||
except Exception as e:
|
||||
unrecognized_speech_text = (
|
||||
f"Sorry, I didn't catch that. Exception was: \n {e}"
|
||||
)
|
||||
print(unrecognized_speech_text)
|
||||
|
||||
return input_features
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
|
||||
parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
|
||||
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--whisper-repo-id-or-model-path', type=str, default="openai/whisper-small",
|
||||
help='The huggingface repo id for the Whisper (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded'
|
||||
', or the path to the huggingface checkpoint folder')
|
||||
parser.add_argument('--n-predict', type=int, default=32,
|
||||
help='Max tokens to predict')
|
||||
|
||||
args = parser.parse_args()
|
||||
whisper_model_path = args.whisper_repo_id_or_model_path
|
||||
llama_model_path = args.llama2_repo_id_or_model_path
|
||||
|
||||
dataset_path = "hf-internal-testing/librispeech_asr_dummy"
|
||||
# Load dummy dataset and read audio files
|
||||
ds = load_dataset(dataset_path, "clean", split="validation")
|
||||
|
||||
print("Converting and loading models...")
|
||||
processor = WhisperProcessor.from_pretrained(whisper_model_path)
|
||||
|
||||
# generate token ids
|
||||
whisper = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False)
|
||||
whisper.config.forced_decoder_ids = None
|
||||
whisper = whisper.half().to('xpu')
|
||||
|
||||
llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False)
|
||||
llama_model = llama_model.half().to('xpu')
|
||||
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
|
||||
|
||||
r = sr.Recognizer()
|
||||
|
||||
with torch.inference_mode():
|
||||
# warm up
|
||||
sample = ds[2]["audio"]
|
||||
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
|
||||
input_features = input_features.half().contiguous().to('xpu')
|
||||
torch.xpu.synchronize()
|
||||
predicted_ids = whisper.generate(input_features)
|
||||
torch.xpu.synchronize()
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
output_str = output_str[0]
|
||||
input_ids = tokenizer.encode(output_str, return_tensors="pt").to('xpu')
|
||||
output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32)
|
||||
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
|
||||
torch.xpu.synchronize()
|
||||
|
||||
while 1:
|
||||
input_features = get_input_features(r)
|
||||
predicted_ids = whisper.generate(input_features)
|
||||
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
||||
output_str = output_str[0]
|
||||
print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
|
||||
print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
|
||||
prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
|
||||
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
|
||||
streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
|
||||
_ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)
|
||||
Loading…
Reference in a new issue