add voice assistant example (#8711)

This commit is contained in:
Yina Chen 2023-08-10 12:42:14 +08:00 committed by GitHub
parent 4573ff7ffe
commit 6d1ca88aac
2 changed files with 178 additions and 0 deletions

View file

@ -0,0 +1,47 @@
# Voice Assistant
In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Whisper and Llama2 models on any Intel® Arc™ A-Series Graphics. For illustration purposes, we utilize the following models:
- [openai/whisper-small](https://huggingface.co/openai/whisper-small) and [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) as reference whisper models.
- [meta-llama/Llama-2-7b-chat-hf](https://huggingface.co/meta-llama/Llama-2-7b-chat-hf) and [meta-llama/Llama-2-13b-chat-hf](https://huggingface.co/meta-llama/Llama-2-13b-chat-hf) as reference Llama2 models.
## 0. Requirements
To run these examples with BigDL-LLM on Intel® Arc™ A-Series Graphics, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
## Example: Predict Tokens using `generate()` API
In the example [generate.py](./generate.py), we show a basic use case for a Whisper model to conduct transcription using `generate()` API, then use the recoginzed text as the input for Llama2 model to predict the next N tokens using `generate()` API, with BigDL-LLM INT4 optimizations on Intel® Arc™ A-Series Graphics.
### 1. Install
We suggest using conda to manage environment:
```bash
conda create -n llm python=3.9
conda activate llm
# below command will install intel_extension_for_pytorch==2.0.110+xpu as default
# you can install specific ipex/torch version for your need
pip install bigdl-llm[xpu] -f https://developer.intel.com/ipex-whl-stable-xpu
pip install librosa soundfile datasets
pip install accelerate
pip install SpeechRecognition sentencepiece colorama
```
### 2. Configures OneAPI environment variables
```bash
source /opt/intel/oneapi/setvars.sh
```
### 3. Run
For optimal performance on Arc, it is recommended to set several environment variables.
```bash
export USE_XETLA=OFF
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
```
```
python ./generate.py --llama2-repo-id-or-model-path REPO_ID_OR_MODEL_PATH --whisper-repo-id-or-model-path REPO_ID_OR_MODEL_PATH --n-predict N_PREDICT
```
Arguments info:
- `--llama2-repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Llama2 model (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'meta-llama/Llama-2-7b-chat-hf'`.
- `--whisper-repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Whisper model (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openai/whisper-small'`.
- `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`.
#### Sample Output
Should be tested on a linux machine with microphone.

View file

@ -0,0 +1,131 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
import os
import torch
import time
import argparse
import numpy as np
from bigdl.llm.transformers import AutoModelForCausalLM
from bigdl.llm.transformers import AutoModelForSpeechSeq2Seq
from transformers import LlamaTokenizer
import intel_extension_for_pytorch as ipex
from transformers import WhisperProcessor
from transformers import TextStreamer
from colorama import Fore
import speech_recognition as sr
from datasets import load_dataset
# you could tune the prompt based on your own model,
# here the prompt tuning refers to https://huggingface.co/georgesung/llama2_7b_chat_uncensored#prompt-style
DEFAULT_SYSTEM_PROMPT = """\
"""
def get_prompt(message: str, chat_history: list[tuple[str, str]],
system_prompt: str) -> str:
texts = [f'<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n']
# The first user input is _not_ stripped
do_strip = False
for user_input, response in chat_history:
user_input = user_input.strip() if do_strip else user_input
do_strip = True
texts.append(f'{user_input} [/INST] {response.strip()} </s><s>[INST] ')
message = message.strip() if do_strip else message
texts.append(f'{message} [/INST]')
return ''.join(texts)
def get_input_features(r):
with sr.Microphone(device_index=1, sample_rate=16000) as source:
print("Calibrating...")
r.adjust_for_ambient_noise(source, duration=5)
print(Fore.YELLOW + "Listening now..." + Fore.RESET)
try:
audio = r.listen(source, timeout=5, phrase_time_limit=30)
# refer to https://github.com/openai/whisper/blob/main/whisper/audio.py#L63
frame_data = np.frombuffer(audio.frame_data, np.int16).flatten().astype(np.float32) / 32768.0
input_features = processor(frame_data, sampling_rate=audio.sample_rate, return_tensors="pt").input_features
input_features = input_features.half().contiguous().to('xpu')
print("Recognizing...")
except Exception as e:
unrecognized_speech_text = (
f"Sorry, I didn't catch that. Exception was: \n {e}"
)
print(unrecognized_speech_text)
return input_features
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Llama2 model')
parser.add_argument('--llama2-repo-id-or-model-path', type=str, default="meta-llama/Llama-2-7b-chat-hf",
help='The huggingface repo id for the Llama2 (e.g. `meta-llama/Llama-2-7b-chat-hf` and `meta-llama/Llama-2-13b-chat-hf`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--whisper-repo-id-or-model-path', type=str, default="openai/whisper-small",
help='The huggingface repo id for the Whisper (e.g. `openai/whisper-small` and `openai/whisper-medium`) to be downloaded'
', or the path to the huggingface checkpoint folder')
parser.add_argument('--n-predict', type=int, default=32,
help='Max tokens to predict')
args = parser.parse_args()
whisper_model_path = args.whisper_repo_id_or_model_path
llama_model_path = args.llama2_repo_id_or_model_path
dataset_path = "hf-internal-testing/librispeech_asr_dummy"
# Load dummy dataset and read audio files
ds = load_dataset(dataset_path, "clean", split="validation")
print("Converting and loading models...")
processor = WhisperProcessor.from_pretrained(whisper_model_path)
# generate token ids
whisper = AutoModelForSpeechSeq2Seq.from_pretrained(whisper_model_path, load_in_4bit=True, optimize_model=False)
whisper.config.forced_decoder_ids = None
whisper = whisper.half().to('xpu')
llama_model = AutoModelForCausalLM.from_pretrained(llama_model_path, load_in_4bit=True, trust_remote_code=True, optimize_model=False)
llama_model = llama_model.half().to('xpu')
tokenizer = LlamaTokenizer.from_pretrained(llama_model_path)
r = sr.Recognizer()
with torch.inference_mode():
# warm up
sample = ds[2]["audio"]
input_features = processor(sample["array"], sampling_rate=sample["sampling_rate"], return_tensors="pt").input_features
input_features = input_features.half().contiguous().to('xpu')
torch.xpu.synchronize()
predicted_ids = whisper.generate(input_features)
torch.xpu.synchronize()
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
output_str = output_str[0]
input_ids = tokenizer.encode(output_str, return_tensors="pt").to('xpu')
output = llama_model.generate(input_ids, do_sample=False, max_new_tokens=32)
output_str = tokenizer.decode(output[0], skip_special_tokens=True)
torch.xpu.synchronize()
while 1:
input_features = get_input_features(r)
predicted_ids = whisper.generate(input_features)
output_str = processor.batch_decode(predicted_ids, skip_special_tokens=True)
output_str = output_str[0]
print("\n" + Fore.GREEN + "Whisper : " + Fore.RESET + "\n" + output_str)
print("\n" + Fore.BLUE + "BigDL-LLM: " + Fore.RESET)
prompt = get_prompt(output_str, [], system_prompt=DEFAULT_SYSTEM_PROMPT)
input_ids = tokenizer.encode(prompt, return_tensors="pt").to('xpu')
streamer = TextStreamer(tokenizer, skip_special_tokens=True, skip_prompt=True)
_ = llama_model.generate(input_ids, streamer=streamer, do_sample=False, max_new_tokens=args.n_predict)