bigdl-llm stress test for stable version (#9781)
* 1k-512 2k-512 baseline * add cpu stress test * update yaml name * update * update * clean up * test * update * update * update * test * update
This commit is contained in:
		
							parent
							
								
									5cfb4c4f5b
								
							
						
					
					
						commit
						6c75c689ea
					
				
					 6 changed files with 850 additions and 7 deletions
				
			
		| 
						 | 
					@ -1,4 +1,4 @@
 | 
				
			||||||
name: LLM Performance Test for Stable Version
 | 
					name: LLM Test for Stable Version
 | 
				
			||||||
 | 
					
 | 
				
			||||||
# Cancel previous runs in the PR when you push new commits
 | 
					# Cancel previous runs in the PR when you push new commits
 | 
				
			||||||
concurrency:
 | 
					concurrency:
 | 
				
			||||||
| 
						 | 
					@ -21,7 +21,7 @@ jobs:
 | 
				
			||||||
  llm-cpp-build:
 | 
					  llm-cpp-build:
 | 
				
			||||||
    uses: ./.github/workflows/llm-binary-build.yml
 | 
					    uses: ./.github/workflows/llm-binary-build.yml
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  llm-performance-test-on-arc:
 | 
					  llm-perf-regression-test-on-arc:
 | 
				
			||||||
    needs: llm-cpp-build
 | 
					    needs: llm-cpp-build
 | 
				
			||||||
    strategy:
 | 
					    strategy:
 | 
				
			||||||
      fail-fast: false
 | 
					      fail-fast: false
 | 
				
			||||||
| 
						 | 
					@ -104,7 +104,7 @@ jobs:
 | 
				
			||||||
          python csv_to_html.py -f $CSV_SAVE_PATH/fp8 -b $CSV_SAVE_PATH/fp8/transformer_int4_gpu-results-1baseline.csv -t 5.0
 | 
					          python csv_to_html.py -f $CSV_SAVE_PATH/fp8 -b $CSV_SAVE_PATH/fp8/transformer_int4_gpu-results-1baseline.csv -t 5.0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  llm-performance-test-on-spr:
 | 
					  llm-perf-regression-test-on-spr:
 | 
				
			||||||
    needs: llm-cpp-build
 | 
					    needs: llm-cpp-build
 | 
				
			||||||
    strategy:
 | 
					    strategy:
 | 
				
			||||||
      fail-fast: false
 | 
					      fail-fast: false
 | 
				
			||||||
| 
						 | 
					@ -152,9 +152,61 @@ jobs:
 | 
				
			||||||
          # hide time info
 | 
					          # hide time info
 | 
				
			||||||
          sed -i 's/str(end - st)/"xxxxxx"/g' run.py
 | 
					          sed -i 's/str(end - st)/"xxxxxx"/g' run.py
 | 
				
			||||||
          python run.py
 | 
					          python run.py
 | 
				
			||||||
          cp ./*.csv /models/nightly_perf_cpu/
 | 
					          cp ./*.csv /models/stable_version_perf_regression_test_cpu/
 | 
				
			||||||
          cd ../../../test/benchmark
 | 
					          cd ../../../test/benchmark
 | 
				
			||||||
          python -m pip install pandas==1.5.3
 | 
					          python -m pip install pandas==1.5.3
 | 
				
			||||||
          python csv_to_html.py -f /models/nightly_perf_cpu/ -b /models/nightly_perf_cpu/transformer_int4-results-1baseline.csv -t 5.0
 | 
					          python csv_to_html.py -f /models/stable_version_perf_regression_test_cpu/ -b /models/stable_version_perf_regression_test_cpu/transformer_int4-results-1baseline.csv -t 5.0
 | 
				
			||||||
 | 
					  
 | 
				
			||||||
 | 
					
 | 
				
			||||||
  
 | 
					  llm-stress-test-on-spr:
 | 
				
			||||||
 | 
					    needs: llm-perf-regression-test-on-spr
 | 
				
			||||||
 | 
					    strategy:
 | 
				
			||||||
 | 
					      fail-fast: false
 | 
				
			||||||
 | 
					      matrix:
 | 
				
			||||||
 | 
					        python-version: ["3.9"]
 | 
				
			||||||
 | 
					    runs-on: [self-hosted, llm, spr01-perf]
 | 
				
			||||||
 | 
					    env:
 | 
				
			||||||
 | 
					      OMP_NUM_THREADS: 16
 | 
				
			||||||
 | 
					      THREAD_NUM: 16
 | 
				
			||||||
 | 
					      ANALYTICS_ZOO_ROOT: ${{ github.workspace }}
 | 
				
			||||||
 | 
					    steps:
 | 
				
			||||||
 | 
					      - uses: actions/checkout@v3
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Set up Python ${{ matrix.python-version }}
 | 
				
			||||||
 | 
					        uses: actions/setup-python@v4
 | 
				
			||||||
 | 
					        with:
 | 
				
			||||||
 | 
					          python-version: ${{ matrix.python-version }}
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Install dependencies
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          python -m pip install --upgrade pip
 | 
				
			||||||
 | 
					          python -m pip install --upgrade wheel
 | 
				
			||||||
 | 
					          python -m pip install --upgrade omegaconf
 | 
				
			||||||
 | 
					          python -m pip install --upgrade pandas
 | 
				
			||||||
 | 
					          python -m pip install --upgrade einops
 | 
				
			||||||
 | 
					          python -m pip install --upgrade tiktoken
 | 
				
			||||||
 | 
					          python -m pip install --upgrade transformers_stream_generator
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Download llm binary
 | 
				
			||||||
 | 
					        uses: ./.github/actions/llm/download-llm-binary
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Run LLM install (all) test
 | 
				
			||||||
 | 
					        uses: ./.github/actions/llm/setup-llm-env
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					      - name: Test on cpu
 | 
				
			||||||
 | 
					        shell: bash
 | 
				
			||||||
 | 
					        run: |
 | 
				
			||||||
 | 
					          mv python/llm/test/benchmark/stable-version-cpu-stress-test.yaml python/llm/dev/benchmark/all-in-one/config.yaml
 | 
				
			||||||
 | 
					          cd python/llm/dev/benchmark/all-in-one
 | 
				
			||||||
 | 
					          export http_proxy=${HTTP_PROXY}
 | 
				
			||||||
 | 
					          export https_proxy=${HTTPS_PROXY}
 | 
				
			||||||
 | 
					          source bigdl-llm-init -t
 | 
				
			||||||
 | 
					          export OMP_NUM_THREADS=48
 | 
				
			||||||
 | 
					          # hide time info
 | 
				
			||||||
 | 
					          sed -i 's/str(end - st)/"xxxxxx"/g' run-stress-test.py
 | 
				
			||||||
 | 
					          python run-stress-test.py
 | 
				
			||||||
 | 
					          cp ./*.csv /models/stable_version_stress_test_cpu/
 | 
				
			||||||
 | 
					          cd ../../../test/benchmark
 | 
				
			||||||
 | 
					          python -m pip install pandas==1.5.3
 | 
				
			||||||
 | 
					          python csv_to_html.py -f /models/stable_version_stress_test_cpu/
 | 
				
			||||||
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										510
									
								
								python/llm/dev/benchmark/all-in-one/prompt/stress_test_copy.txt
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										510
									
								
								python/llm/dev/benchmark/all-in-one/prompt/stress_test_copy.txt
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										256
									
								
								python/llm/dev/benchmark/all-in-one/run-stress-test.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										256
									
								
								python/llm/dev/benchmark/all-in-one/run-stress-test.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
					@ -0,0 +1,256 @@
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Copyright 2016 The BigDL Authors.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Licensed under the Apache License, Version 2.0 (the "License");
 | 
				
			||||||
 | 
					# you may not use this file except in compliance with the License.
 | 
				
			||||||
 | 
					# You may obtain a copy of the License at
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					#     http://www.apache.org/licenses/LICENSE-2.0
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					# Unless required by applicable law or agreed to in writing, software
 | 
				
			||||||
 | 
					# distributed under the License is distributed on an "AS IS" BASIS,
 | 
				
			||||||
 | 
					# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
				
			||||||
 | 
					# See the License for the specific language governing permissions and
 | 
				
			||||||
 | 
					# limitations under the License.
 | 
				
			||||||
 | 
					#
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# this code is copied from llama2 example test, and added performance test
 | 
				
			||||||
 | 
					import torch
 | 
				
			||||||
 | 
					import time
 | 
				
			||||||
 | 
					import gc
 | 
				
			||||||
 | 
					import traceback
 | 
				
			||||||
 | 
					import threading
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import numpy as np
 | 
				
			||||||
 | 
					from datetime import date
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					import os
 | 
				
			||||||
 | 
					current_dir = os.path.dirname(os.path.realpath(__file__))
 | 
				
			||||||
 | 
					benchmark_util_path = os.path.join(current_dir, '..')
 | 
				
			||||||
 | 
					import sys
 | 
				
			||||||
 | 
					sys.path.append(benchmark_util_path)
 | 
				
			||||||
 | 
					from benchmark_util import BenchmarkWrapper
 | 
				
			||||||
 | 
					from bigdl.llm.utils.common.log4Error import invalidInputError
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					LLAMA_IDS = ['meta-llama/Llama-2-7b-chat-hf','meta-llama/Llama-2-13b-chat-hf',
 | 
				
			||||||
 | 
					             'meta-llama/Llama-2-70b-chat-hf','decapoda-research/llama-7b-hf',
 | 
				
			||||||
 | 
					             'decapoda-research/llama-65b-hf','lmsys/vicuna-7b-v1.5',
 | 
				
			||||||
 | 
					             'lmsys/vicuna-13b-v1.3','project-baize/merged-baize-30b']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					CHATGLM_IDS = ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b', 'THUDM/chatglm3-6b']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					LLAVA_IDS = ['liuhaotian/llava-v1.5-7b']
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					results = []
 | 
				
			||||||
 | 
					excludes = []
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_model_in_thread(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials):
 | 
				
			||||||
 | 
					    for i in range(num_trials + warm_up):
 | 
				
			||||||
 | 
					        st = time.perf_counter()
 | 
				
			||||||
 | 
					        output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
				
			||||||
 | 
					                                    num_beams=num_beams)
 | 
				
			||||||
 | 
					        torch.xpu.synchronize()
 | 
				
			||||||
 | 
					        end = time.perf_counter()
 | 
				
			||||||
 | 
					        output_ids = output_ids.cpu()
 | 
				
			||||||
 | 
					        print("model generate cost: " + str(end - st))
 | 
				
			||||||
 | 
					        output = tokenizer.batch_decode(output_ids)
 | 
				
			||||||
 | 
					        print(output[0])
 | 
				
			||||||
 | 
					        actual_out_len = output_ids.shape[1] - actual_in_len
 | 
				
			||||||
 | 
					        if i >= warm_up:
 | 
				
			||||||
 | 
					            result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
				
			||||||
 | 
					                                actual_in_len, actual_out_len])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1, num_trials=3, num_beams=1, low_bit='sym_int4', cpu_embedding=False):
 | 
				
			||||||
 | 
					    # TODO: make a parameter
 | 
				
			||||||
 | 
					    result= {}
 | 
				
			||||||
 | 
					    if test_api == 'transformer_int4':
 | 
				
			||||||
 | 
					        result = run_transformer_int4(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
				
			||||||
 | 
					    elif test_api == 'transformer_int4_gpu':
 | 
				
			||||||
 | 
					        result = run_transformer_int4_gpu(repo_id, local_model_hub, in_out_pairs, warm_up, num_trials, num_beams, low_bit)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for in_out_pair in in_out_pairs:
 | 
				
			||||||
 | 
					        if result and result[in_out_pair]:
 | 
				
			||||||
 | 
					            results.append([repo_id,
 | 
				
			||||||
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[0]*1000.0, 2),
 | 
				
			||||||
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[1]*1000.0, 2),
 | 
				
			||||||
 | 
					                            round(np.mean(result[in_out_pair], axis=0)[2]*1000.0, 2),
 | 
				
			||||||
 | 
					                            in_out_pair,
 | 
				
			||||||
 | 
					                            f'{int(np.mean(result[in_out_pair], axis=0)[3])}' +
 | 
				
			||||||
 | 
					                            f'-{int(np.mean(result[in_out_pair], axis=0)[4])}',
 | 
				
			||||||
 | 
					                            num_beams,
 | 
				
			||||||
 | 
					                            low_bit,
 | 
				
			||||||
 | 
					                            cpu_embedding if 'win' in test_api else 'N/A',
 | 
				
			||||||
 | 
					                            result[in_out_pair][-1][5] if 'win' in test_api else 'N/A']) # currently only peak mem for win gpu is caught here
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def get_model_path(repo_id, local_model_hub):
 | 
				
			||||||
 | 
					    if local_model_hub:
 | 
				
			||||||
 | 
					        repo_model_name = repo_id.split("/")[1]
 | 
				
			||||||
 | 
					        local_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
				
			||||||
 | 
					        invalidInputError(os.path.isdir(local_model_path),
 | 
				
			||||||
 | 
					                          local_model_path + " not exists!, Please check your models' folder.")
 | 
				
			||||||
 | 
					        return local_model_path
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        return repo_id
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_transformer_int4(repo_id,
 | 
				
			||||||
 | 
					                         local_model_hub,
 | 
				
			||||||
 | 
					                         in_out_pairs,
 | 
				
			||||||
 | 
					                         warm_up,
 | 
				
			||||||
 | 
					                         num_trials,
 | 
				
			||||||
 | 
					                         num_beams,
 | 
				
			||||||
 | 
					                         low_bit):
 | 
				
			||||||
 | 
					    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
				
			||||||
 | 
					    from transformers import AutoTokenizer, LlamaTokenizer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model_path = get_model_path(repo_id, local_model_hub)
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    st = time.perf_counter()
 | 
				
			||||||
 | 
					    if repo_id in CHATGLM_IDS:
 | 
				
			||||||
 | 
					        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True, torch_dtype='auto').eval()
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					    elif repo_id in LLAMA_IDS:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                     use_cache=True).eval()
 | 
				
			||||||
 | 
					        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                     use_cache=True).eval()
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					    end = time.perf_counter()
 | 
				
			||||||
 | 
					    print(">> loading of model costs {}s".format(end - st))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = BenchmarkWrapper(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    result = {}
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        for in_out in in_out_pairs:
 | 
				
			||||||
 | 
					            in_out_len = in_out.split("-")
 | 
				
			||||||
 | 
					            in_len = int(in_out_len[0])
 | 
				
			||||||
 | 
					            out_len = int(in_out_len[1])
 | 
				
			||||||
 | 
					            i = 0
 | 
				
			||||||
 | 
					            with open("prompt/stress_test.txt", 'r') as file:
 | 
				
			||||||
 | 
					                for input_str in file:
 | 
				
			||||||
 | 
					                    # As different tokenizer has different encodings,
 | 
				
			||||||
 | 
					                    # slice the input_ids to ensure the prompt length is required length.
 | 
				
			||||||
 | 
					                    input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
				
			||||||
 | 
					                    input_ids = input_ids[:, :in_len]
 | 
				
			||||||
 | 
					                    true_str = tokenizer.batch_decode(input_ids)[0]
 | 
				
			||||||
 | 
					                    input_ids = tokenizer.encode(true_str, return_tensors="pt")
 | 
				
			||||||
 | 
					                    actual_in_len = input_ids.shape[1]
 | 
				
			||||||
 | 
					                    result[in_out] = []
 | 
				
			||||||
 | 
					                    st = time.perf_counter()
 | 
				
			||||||
 | 
					                    output_ids = model.generate(input_ids, do_sample=False, max_new_tokens=out_len,
 | 
				
			||||||
 | 
					                                                num_beams=num_beams)
 | 
				
			||||||
 | 
					                    end = time.perf_counter()
 | 
				
			||||||
 | 
					                    print("model generate cost: " + str(end - st))
 | 
				
			||||||
 | 
					                    output = tokenizer.batch_decode(output_ids)
 | 
				
			||||||
 | 
					                    print(output[0])
 | 
				
			||||||
 | 
					                    actual_out_len = output_ids.shape[1] - actual_in_len
 | 
				
			||||||
 | 
					                    if i >= warm_up:
 | 
				
			||||||
 | 
					                        result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time,
 | 
				
			||||||
 | 
					                                            actual_in_len, actual_out_len])
 | 
				
			||||||
 | 
					                    i += 1
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def run_transformer_int4_gpu(repo_id,
 | 
				
			||||||
 | 
					                             local_model_hub,
 | 
				
			||||||
 | 
					                             in_out_pairs,
 | 
				
			||||||
 | 
					                             warm_up,
 | 
				
			||||||
 | 
					                             num_trials,
 | 
				
			||||||
 | 
					                             num_beams,
 | 
				
			||||||
 | 
					                             low_bit):
 | 
				
			||||||
 | 
					    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
				
			||||||
 | 
					    from transformers import AutoTokenizer, GPTJForCausalLM, LlamaTokenizer
 | 
				
			||||||
 | 
					    import intel_extension_for_pytorch as ipex
 | 
				
			||||||
 | 
					    model_path = get_model_path(repo_id, local_model_hub)
 | 
				
			||||||
 | 
					    # Load model in 4 bit,
 | 
				
			||||||
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
 | 
					    st = time.perf_counter()
 | 
				
			||||||
 | 
					    if repo_id in CHATGLM_IDS:
 | 
				
			||||||
 | 
					        model = AutoModel.from_pretrained(model_path, load_in_low_bit=low_bit, optimize_model=True,
 | 
				
			||||||
 | 
					                                          trust_remote_code=True, use_cache=True).eval()
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					    elif repo_id in LLAMA_IDS:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, load_in_low_bit=low_bit, trust_remote_code=True,
 | 
				
			||||||
 | 
					                                                     use_cache=True).eval()
 | 
				
			||||||
 | 
					        tokenizer = LlamaTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_low_bit=low_bit,
 | 
				
			||||||
 | 
					                                                     trust_remote_code=True, use_cache=True).eval()
 | 
				
			||||||
 | 
					        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
 | 
					        model = model.to('xpu')
 | 
				
			||||||
 | 
					        if isinstance(model, GPTJForCausalLM):
 | 
				
			||||||
 | 
					            # For gpt-j model family, this optimization can provide a better performance.
 | 
				
			||||||
 | 
					            model = ipex.optimize(model.eval(), inplace=True)
 | 
				
			||||||
 | 
					    end = time.perf_counter()
 | 
				
			||||||
 | 
					    print(">> loading of model costs {}s".format(end - st))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    model = BenchmarkWrapper(model)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    result = {}
 | 
				
			||||||
 | 
					    with torch.inference_mode():
 | 
				
			||||||
 | 
					        for in_out in in_out_pairs:
 | 
				
			||||||
 | 
					            in_out_len = in_out.split("-")
 | 
				
			||||||
 | 
					            in_len = int(in_out_len[0])
 | 
				
			||||||
 | 
					            out_len = int(in_out_len[1])
 | 
				
			||||||
 | 
					            # As different tokenizer has different encodings,
 | 
				
			||||||
 | 
					            # in_len.txt maybe shorter than we need,
 | 
				
			||||||
 | 
					            # use much longer context to make sure input length
 | 
				
			||||||
 | 
					            test_length = min(in_len*2, 8192)
 | 
				
			||||||
 | 
					            while test_length not in [32, 256, 1024, 2048, 8192]:
 | 
				
			||||||
 | 
					                test_length = test_length * 2
 | 
				
			||||||
 | 
					            input_str = open(f"prompt/{test_length}.txt", 'r').read()
 | 
				
			||||||
 | 
					            # As different tokenizer has different encodings,
 | 
				
			||||||
 | 
					            # slice the input_ids to ensure the prompt length is required length.
 | 
				
			||||||
 | 
					            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
				
			||||||
 | 
					            input_ids = input_ids[:, :in_len]
 | 
				
			||||||
 | 
					            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
				
			||||||
 | 
					            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
				
			||||||
 | 
					            actual_in_len = input_ids.shape[1]
 | 
				
			||||||
 | 
					            result[in_out] = []
 | 
				
			||||||
 | 
					            thread = threading.Thread(target=run_model_in_thread, args=(model, in_out, tokenizer, result, warm_up, num_beams, input_ids, out_len, actual_in_len, num_trials))
 | 
				
			||||||
 | 
					            thread.start()
 | 
				
			||||||
 | 
					            thread.join()
 | 
				
			||||||
 | 
					    del model
 | 
				
			||||||
 | 
					    torch.xpu.empty_cache()
 | 
				
			||||||
 | 
					    return result
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					if __name__ == '__main__':
 | 
				
			||||||
 | 
					    from omegaconf import OmegaConf
 | 
				
			||||||
 | 
					    conf = OmegaConf.load(f'{current_dir}/config.yaml')
 | 
				
			||||||
 | 
					    today = date.today()
 | 
				
			||||||
 | 
					    if 'exclude' in conf:
 | 
				
			||||||
 | 
					        excludes = conf['exclude']
 | 
				
			||||||
 | 
					    
 | 
				
			||||||
 | 
					    import pandas as pd
 | 
				
			||||||
 | 
					    for api in conf.test_api:
 | 
				
			||||||
 | 
					        for model in conf.repo_id:
 | 
				
			||||||
 | 
					            in_out_pairs = conf['in_out_pairs'].copy()
 | 
				
			||||||
 | 
					            if excludes:
 | 
				
			||||||
 | 
					                for in_out in conf['in_out_pairs']:
 | 
				
			||||||
 | 
					                    model_id_input = model + ':' + in_out.split('-')[0]
 | 
				
			||||||
 | 
					                    if model_id_input in excludes:
 | 
				
			||||||
 | 
					                        in_out_pairs.remove(in_out)
 | 
				
			||||||
 | 
					            run_model(model, api, in_out_pairs, conf['local_model_hub'], conf['warm_up'], conf['num_trials'], conf['num_beams'],
 | 
				
			||||||
 | 
					                      conf['low_bit'], conf['cpu_embedding'])
 | 
				
			||||||
 | 
					        df = pd.DataFrame(results, columns=['model', '1st token avg latency (ms)', '2+ avg latency (ms/token)', 'encoder time (ms)',
 | 
				
			||||||
 | 
					                                            'input/output tokens', 'actual input/output tokens', 'num_beams', 'low_bit', 'cpu_embedding', 
 | 
				
			||||||
 | 
					                                            'peak mem (GB)'])
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        df.to_csv(f'{current_dir}/{api}-results-{today}.csv')
 | 
				
			||||||
 | 
					        results = []
 | 
				
			||||||
| 
						 | 
					@ -31,7 +31,7 @@ def highlight_vals(val, max=3.0):
 | 
				
			||||||
        return ''
 | 
					        return ''
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def is_diffs_within_normal_range(diff1, diff2, threshold=5.0):
 | 
					def is_diffs_within_normal_range(diff1, diff2, threshold=5.0):
 | 
				
			||||||
    return not any(diff < (-threshold) for diff in diff1 + diff2)
 | 
					    return not any(diff < (-threshold) for diff in diff1 + diff2 if isinstance(diff, float))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def main():
 | 
					def main():
 | 
				
			||||||
    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
					    parser = argparse.ArgumentParser(description="convert .csv file to .html file")
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -0,0 +1,20 @@
 | 
				
			||||||
 | 
					repo_id:
 | 
				
			||||||
 | 
					  - 'meta-llama/Llama-2-7b-chat-hf'
 | 
				
			||||||
 | 
					  - 'meta-llama/Llama-2-13b-chat-hf'
 | 
				
			||||||
 | 
					  - 'THUDM/chatglm2-6b'
 | 
				
			||||||
 | 
					  - 'THUDM/chatglm3-6b'
 | 
				
			||||||
 | 
					  - 'baichuan-inc/Baichuan2-7B-Chat'
 | 
				
			||||||
 | 
					  - 'baichuan-inc/Baichuan2-13B-Chat'
 | 
				
			||||||
 | 
					  - 'Qwen/Qwen-14B-Chat'
 | 
				
			||||||
 | 
					local_model_hub: '/models'
 | 
				
			||||||
 | 
					warm_up: 1
 | 
				
			||||||
 | 
					num_trials: 4
 | 
				
			||||||
 | 
					num_beams: 1 # default to greedy search
 | 
				
			||||||
 | 
					low_bit: 'sym_int4' # default to use 'sym_int4' (i.e. symmetric int4)
 | 
				
			||||||
 | 
					in_out_pairs:
 | 
				
			||||||
 | 
					  - '1024-512'
 | 
				
			||||||
 | 
					  - '2048-512'
 | 
				
			||||||
 | 
					test_api:
 | 
				
			||||||
 | 
					  - "transformer_int4"
 | 
				
			||||||
 | 
					  # - "transformer_int4_gpu"  # on Intel GPU
 | 
				
			||||||
 | 
					cpu_embedding: False # whether put embedding to CPU (only avaiable now for gpu win related test_api)
 | 
				
			||||||
		Loading…
	
		Reference in a new issue