mistral decoding_fast_path and fused mlp (#9714)

* mistral decoding_fast_path and fused mlp

* meet code review
This commit is contained in:
Xin Qiu 2023-12-21 10:11:37 +08:00 committed by GitHub
parent d157f623b6
commit 6c3e698bf1
2 changed files with 92 additions and 53 deletions

View file

@ -662,6 +662,9 @@ def _optimize_post(model, lightweight_bmm=False):
convert_forward(model,
module.MistralRMSNorm,
llama_rms_norm_forward)
convert_forward(model,
module.MistralMLP,
llama_mlp_forward)
elif model.config.model_type == "Yi":
modeling_module_name = model.__class__.__module__
module = importlib.import_module(modeling_module_name)

View file

@ -44,7 +44,8 @@ from bigdl.llm.utils.common import invalidInputError
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb,\
apply_rotary_pos_emb_no_cache_xpu
from bigdl.llm.transformers.models.llama import is_enough_kv_cache_room
from bigdl.llm.transformers.low_bit_linear import SYM_INT4
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
@ -63,6 +64,17 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
def should_use_fuse_rope(self, hidden_states, position_ids):
use_fuse_rope = hidden_states.device.type == "xpu"
use_fuse_rope = use_fuse_rope and not (self.training and hidden_states.requires_grad)
use_fuse_rope = use_fuse_rope and position_ids is not None
return use_fuse_rope
def use_decoding_fast_path(q_type, use_fuse_rope, enough_kv_room, bs):
return q_type == SYM_INT4 and use_fuse_rope and enough_kv_room and bs == 1
def mistral_attention_forward(
self,
hidden_states: torch.Tensor,
@ -76,64 +88,88 @@ def mistral_attention_forward(
bsz, q_len, _ = hidden_states.size()
device = hidden_states.device
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
enough_kv_room = is_enough_kv_cache_room(past_key_value)
decoding_fast_path = use_decoding_fast_path(self.q_proj.qtype,
use_fuse_rope,
enough_kv_room,
bsz * q_len)
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
if query_states.device.type == "xpu" and not (self.training and query_states.requires_grad):
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"mistral")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "mistral")
if past_key_value is not None:
# reuse k, v, self_attention
if decoding_fast_path:
hidden_states = hidden_states.view(1, -1)
kv_seq_len = past_key_value[0].shape[-2]
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
import linear_q4_0
query_states, key_states, value_states = linear_q4_0.forward_qkv(hidden_states,
self.q_proj.weight,
self.k_proj.weight,
self.v_proj.weight,
position_ids,
cache_k, cache_v,
self.q_proj.weight.qtype,
kv_seq_len,
self.head_dim)
kv_seq_len += 1
else:
query_states = self.q_proj(hidden_states)
key_states = self.k_proj(hidden_states)
value_states = self.v_proj(hidden_states)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = key_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = value_states.view(bsz, q_len,
self.num_key_value_heads, self.head_dim).transpose(1, 2)
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_key_value_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
if use_fuse_rope:
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
key_states,
position_ids,
"mistral")
else:
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
cos, sin, position_ids, "mistral")
if past_key_value is not None:
# reuse k, v, self_attention
cache_k = past_key_value[0]
cache_v = past_key_value[1]
if not enough_kv_room:
# allocate new
new_cache_k, new_cache_v = extend_kv_cache(bsz,
self.num_key_value_heads, # Support GQA
self.head_dim,
cache_k.size(2),
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
dtype=cache_k.dtype,
device=device)
new_cache_k[:] = cache_k
new_cache_v[:] = cache_v
cache_k = new_cache_k
cache_v = new_cache_v
key_states, value_states = append_kv_cache(cache_k, cache_v, key_states, value_states)
elif use_cache:
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
new_key_states, new_value_states = init_kv_cache(bsz,
self.num_key_value_heads,
self.head_dim,
kv_seq_len,
max_cache_length,
dtype=key_states.dtype,
device=device)
new_key_states[:] = key_states
new_value_states[:] = value_states
key_states = new_key_states
value_states = new_value_states
past_key_value = (key_states, value_states) if use_cache else None