parent
274eddfb1a
commit
6a4c40fc1f
2 changed files with 36 additions and 35 deletions
|
|
@ -10,12 +10,13 @@
|
|||
|
||||
### Step 0: Prepare Environment
|
||||
|
||||
[Conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) is needed to prepare the Python environment for running this example. Please refer to the [install guide](../../UserGuide/python.md) for more details.
|
||||
We recommend using [conda](https://docs.conda.io/projects/conda/en/latest/user-guide/install/) to prepare the environment. Please refer to the [install guide](../Overview/install.md) for more details.
|
||||
|
||||
```bash
|
||||
conda create -n py37 python=3.7 # "py37" is conda environment name, you can use any name you like.
|
||||
conda activate py37
|
||||
pip install --pre --upgrade bigdl-orca
|
||||
|
||||
pip install bigdl-orca
|
||||
pip install torch torchvision
|
||||
pip install tqdm
|
||||
```
|
||||
|
|
@ -24,18 +25,17 @@ pip install tqdm
|
|||
```python
|
||||
from bigdl.orca import init_orca_context, stop_orca_context
|
||||
|
||||
cluster_mode = "local"
|
||||
if cluster_mode == "local": # For local machine
|
||||
init_orca_context(cores=4, memory="10g")
|
||||
init_orca_context(cores=4, memory="4g")
|
||||
elif cluster_mode == "k8s": # For K8s cluster
|
||||
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1)
|
||||
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="4g", master=..., container_image=...)
|
||||
elif cluster_mode == "yarn": # For Hadoop/YARN cluster
|
||||
init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="10g", driver_memory="10g", driver_cores=1)
|
||||
init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="4g")
|
||||
```
|
||||
|
||||
This is the only place where you need to specify local or distributed mode. View [Orca Context](../Overview/orca-context.md) for more details.
|
||||
|
||||
**Note:** You should `export HADOOP_CONF_DIR=/path/to/hadoop/conf/dir` when running on Hadoop YARN cluster. View [Hadoop User Guide](../../UserGuide/hadoop.md) for more details.
|
||||
Please check the tutorials if you want to run on [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|
||||
|
||||
### Step 2: Define the Model
|
||||
|
||||
|
|
@ -63,8 +63,11 @@ class LeNet(nn.Module):
|
|||
x = F.relu(self.fc1(x))
|
||||
x = self.fc2(x)
|
||||
return F.log_softmax(x, dim=1)
|
||||
|
||||
loss = nn.NLLLoss()
|
||||
```
|
||||
After defining your model, you need to define a *Model Creator Function* that takes the parameter `config` and returns an instance of your model, and a *Optimizer Creator Function* that has two parameters `model` and `config` and returns a PyTorch optimizer.
|
||||
|
||||
You need to define a *Model Creator Function* that takes the parameter `config` and returns an instance of your PyTorch model, and an *Optimizer Creator Function* that takes two parameters `model` and `config` and returns an instance of your PyTorch optimizer.
|
||||
|
||||
```python
|
||||
def model_creator(config):
|
||||
|
|
@ -72,18 +75,16 @@ def model_creator(config):
|
|||
return model
|
||||
|
||||
def optim_creator(model, config):
|
||||
return torch.optim.Adam(model.parameters(), lr=0.001)
|
||||
return torch.optim.Adam(model.parameters(), lr=config.get("lr", 0.001))
|
||||
```
|
||||
|
||||
### Step 3: Define Train Dataset
|
||||
|
||||
You can define the dataset using a *Data Creator Function* that has two parameters `config` and `batch_size` and returns a [Pytorch DataLoader](https://pytorch.org/docs/stable/data.html). Orca also supports [Spark DataFrames](../Overview/data-parallel-processing.html#spark-dataframes) and [XShards](../Overview/data-parallel-processing.html#xshards-distributed-data-parallel-python-processing).
|
||||
You can define the dataset using a *Data Creator Function* that has two parameters `config` and `batch_size` and returns a [Pytorch DataLoader](https://pytorch.org/docs/stable/data.html). Orca also supports [Spark DataFrame](./spark-dataframe.md) and [Orca XShards](./xshards-pandas.md).
|
||||
|
||||
```python
|
||||
import torch
|
||||
from torchvision import datasets, transforms
|
||||
|
||||
batch_size = 64
|
||||
dir = '/tmp/dataset'
|
||||
|
||||
def train_loader_creator(config, batch_size):
|
||||
|
|
@ -109,22 +110,24 @@ def test_loader_creator(config, batch_size):
|
|||
|
||||
### Step 4: Fit with Orca Estimator
|
||||
|
||||
First, Create an Estimator
|
||||
First, Create an Orca Estimator for PyTorch.
|
||||
|
||||
```python
|
||||
from bigdl.orca.learn.pytorch import Estimator
|
||||
from bigdl.orca.learn.metrics import Accuracy
|
||||
|
||||
est = Estimator.from_torch(model=model_creator, optimizer=optim_creator, loss=nn.NLLLoss(), metrics=[Accuracy()], use_tqdm=True)
|
||||
est = Estimator.from_torch(model=model_creator, optimizer=optim_creator, loss=loss,
|
||||
metrics=[Accuracy()], use_tqdm=True)
|
||||
```
|
||||
|
||||
Next, fit and evaluate using the Estimator
|
||||
Next, fit and evaluate using the Estimator.
|
||||
|
||||
```python
|
||||
est.fit(data=train_loader_creator, epochs=1, batch_size=batch_size)
|
||||
result = est.evaluate(data=test_loader_creator, batch_size=batch_size)
|
||||
for r in result:
|
||||
print(r, ":", result[r])
|
||||
batch_size = 64
|
||||
|
||||
train_stats = est.fit(data=train_loader_creator, epochs=1, batch_size=batch_size)
|
||||
eval_stats = est.evaluate(data=test_loader_creator, batch_size=batch_size)
|
||||
print(eval_stats)
|
||||
```
|
||||
|
||||
### Step 5: Save and Load the Model
|
||||
|
|
@ -141,3 +144,5 @@ est.load("mnist_model")
|
|||
```
|
||||
|
||||
**Note:** You should call `stop_orca_context()` when your application finishes.
|
||||
|
||||
That's it, the same code can run seamlessly on your local laptop and scale to [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|
||||
|
|
|
|||
|
|
@ -27,7 +27,7 @@ from bigdl.orca import init_orca_context, stop_orca_context
|
|||
if cluster_mode == "local": # For local machine
|
||||
init_orca_context(cluster_mode="local", cores=4, memory="4g")
|
||||
elif cluster_mode == "k8s": # For K8s cluster
|
||||
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="4g")
|
||||
init_orca_context(cluster_mode="k8s", num_nodes=2, cores=2, memory="4g", master=..., container_image=...)
|
||||
elif cluster_mode == "yarn": # For Hadoop/YARN cluster
|
||||
init_orca_context(cluster_mode="yarn", num_nodes=2, cores=2, memory="4g")
|
||||
```
|
||||
|
|
@ -38,7 +38,7 @@ Please check the tutorials if you want to run on [Kubernetes](../Tutorial/k8s.md
|
|||
|
||||
### Step 2: Define the Model
|
||||
|
||||
You can then define the Keras model in the _Creator Function_ using the standard TensorFlow 2 Keras APIs.
|
||||
You can then define and compile the Keras model in the _Creator Function_ using the standard TensorFlow 2 Keras APIs.
|
||||
|
||||
```python
|
||||
import tensorflow as tf
|
||||
|
|
@ -74,7 +74,6 @@ def preprocess(x, y):
|
|||
|
||||
def train_data_creator(config, batch_size):
|
||||
(train_feature, train_label), _ = tf.keras.datasets.mnist.load_data()
|
||||
|
||||
dataset = tf.data.Dataset.from_tensor_slices((train_feature, train_label))
|
||||
dataset = dataset.repeat()
|
||||
dataset = dataset.map(preprocess)
|
||||
|
|
@ -84,7 +83,6 @@ def train_data_creator(config, batch_size):
|
|||
|
||||
def val_data_creator(config, batch_size):
|
||||
_, (val_feature, val_label) = tf.keras.datasets.mnist.load_data()
|
||||
|
||||
dataset = tf.data.Dataset.from_tensor_slices((val_feature, val_label))
|
||||
dataset = dataset.repeat()
|
||||
dataset = dataset.map(preprocess)
|
||||
|
|
@ -105,17 +103,15 @@ est = Estimator.from_keras(model_creator=model_creator, workers_per_node=2)
|
|||
Next, fit and evaluate using the Estimator.
|
||||
```python
|
||||
batch_size = 320
|
||||
stats = est.fit(train_data_creator,
|
||||
epochs=5,
|
||||
batch_size=batch_size,
|
||||
steps_per_epoch=60000 // batch_size,
|
||||
validation_data=val_data_creator,
|
||||
validation_steps=10000 // batch_size)
|
||||
train_stats = est.fit(train_data_creator,
|
||||
epochs=5,
|
||||
batch_size=batch_size,
|
||||
steps_per_epoch=60000 // batch_size,
|
||||
validation_data=val_data_creator,
|
||||
validation_steps=10000 // batch_size)
|
||||
|
||||
stats = est.evaluate(val_data_creator, num_steps=10000 // batch_size)
|
||||
print(stats)
|
||||
|
||||
est.shutdown()
|
||||
eval_stats = est.evaluate(val_data_creator, num_steps=10000 // batch_size)
|
||||
print(eval_stats)
|
||||
```
|
||||
|
||||
### Step 5: Save and Load the Model
|
||||
|
|
@ -146,6 +142,6 @@ est.save("lenet_model.h5", save_format='h5')
|
|||
est.load("lenet_model.h5")
|
||||
```
|
||||
|
||||
That's it, the same code can run seamlessly on your local laptop and scale to [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|
||||
|
||||
**Note:** You should call `stop_orca_context()` when your program finishes.
|
||||
|
||||
That's it, the same code can run seamlessly on your local laptop and scale to [Kubernetes](../Tutorial/k8s.md) or [Hadoop/YARN](../Tutorial/yarn.md) clusters.
|
||||
|
|
|
|||
Loading…
Reference in a new issue