parent
6352c718f3
commit
6a0134a9b2
2 changed files with 11 additions and 6 deletions
|
|
@ -81,7 +81,12 @@ Q4_K = ggml_tensor_qtype["q4_k"]
|
|||
Q6_K = ggml_tensor_qtype["q6_k"]
|
||||
Q5_K = ggml_tensor_qtype["q5_k"]
|
||||
FP6_K = ggml_tensor_qtype["fp6_k"]
|
||||
SYM_INT4_RTN = ggml_tensor_qtype["sym_int4_rtn"]
|
||||
SYM_INT8_RTN = ggml_tensor_qtype["sym_int8_rtn"]
|
||||
RTN_DTYPE = {
|
||||
SYM_INT4_RTN: torch.uint8,
|
||||
SYM_INT8_RTN: torch.int8,
|
||||
}
|
||||
|
||||
|
||||
# For sym_int4
|
||||
|
|
@ -217,8 +222,8 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
|||
f"Last dim of input tensor must be multiple of {QK}")
|
||||
|
||||
dst_size = (n // QK) * block_size_in_bytes
|
||||
if qtype in [SYM_INT8_RTN]:
|
||||
dst_tensor = torch.empty(dst_size, dtype=torch.int8,
|
||||
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN]:
|
||||
dst_tensor = torch.empty(dst_size, dtype=RTN_DTYPE[qtype],
|
||||
device=device)
|
||||
scale = torch.empty(n // k, dtype=torch.float32,
|
||||
device=device)
|
||||
|
|
@ -230,11 +235,11 @@ def ggml_convert_qtype(tensor: torch.Tensor, qtype: int,
|
|||
dst = ctypes.c_void_p(dst_tensor.data.data_ptr())
|
||||
hist = (ctypes.c_int64 * 16)()
|
||||
if qtype not in [IQ2_XXS, IQ2_XS, Q2_K, IQ1_S, Q4_K, Q6_K, Q5_K, FP6_K]:
|
||||
if qtype in [SYM_INT8_RTN]:
|
||||
if qtype in [SYM_INT8_RTN, SYM_INT4_RTN]:
|
||||
scale_ptr = ctypes.cast(scale.data.data_ptr(), ctypes.POINTER(ctypes.c_float))
|
||||
ggml.ggml_quantize_tensor_rtn(src, dst, scale_ptr, qtype, n,
|
||||
k, hist, enable_scale_search)
|
||||
dst_tensor = dst_tensor.reshape_as(tensor)
|
||||
dst_tensor = dst_tensor.reshape(tensor.shape[0], tensor.shape[-1] // QK)
|
||||
return dst_tensor, scale.type(torch.float16)
|
||||
else:
|
||||
ggml.ggml_quantize_tensor(src, dst, qtype, n, k, hist, enable_scale_search)
|
||||
|
|
|
|||
|
|
@ -76,7 +76,7 @@ class _BaseAutoModelClass:
|
|||
# for intel_npu_acceleration_library >= 1.1.0
|
||||
from intel_npu_acceleration_library.dtypes import int8, int4
|
||||
qtype_map = {
|
||||
'sym_int4': int4,
|
||||
'sym_int4': "sym_int4_rtn",
|
||||
'sym_int8': "sym_int8_rtn",
|
||||
'fp16': torch.half,
|
||||
'fp32': torch.float,
|
||||
|
|
@ -119,7 +119,7 @@ class _BaseAutoModelClass:
|
|||
from intel_npu_acceleration_library.compiler import create_npu_kernels
|
||||
with torch.no_grad():
|
||||
optimize_llm(model)
|
||||
if qtype == "sym_int8_rtn":
|
||||
if qtype in ["sym_int8_rtn", "sym_int4_rtn"]:
|
||||
cls.load_convert(qtype, model, *args, **kwargs)
|
||||
else:
|
||||
if not qtype.is_floating_point:
|
||||
|
|
|
|||
Loading…
Reference in a new issue