Fix vllm print error message issue (#10664)
* update chatglm readme * Add condition to invalidInputError * update * update * style
This commit is contained in:
parent
29d97e4678
commit
69bdbf5806
5 changed files with 9 additions and 2 deletions
|
|
@ -87,7 +87,7 @@ Then you can access the api server as follows:
|
|||
curl http://localhost:8000/v1/completions \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"model": "/MODEL_PATH/Llama-2-7b-chat-hf-ipex/",
|
||||
"model": "/MODEL_PATH/Llama-2-7b-chat-hf/",
|
||||
"prompt": "San Francisco is a",
|
||||
"max_tokens": 128,
|
||||
"temperature": 0
|
||||
|
|
|
|||
|
|
@ -117,6 +117,7 @@ def compute_attn_outputs_weights(query_states, key_states, value_states, bsz, q_
|
|||
|
||||
if attn_output.size() != (bsz, num_heads, q_len, head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, num_heads, q_len, head_dim)},"
|
||||
f" but is {attn_output.size()}"
|
||||
)
|
||||
|
|
@ -326,6 +327,7 @@ def mistral_attention_forward_quantized(
|
|||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}"
|
||||
)
|
||||
|
|
@ -682,6 +684,7 @@ def mistral_attention_forward_4_36_quantized(
|
|||
if attention_mask is not None:
|
||||
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)},"
|
||||
f" but is {attention_mask.size()}"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -351,6 +351,7 @@ def mixtral_attention_forward(
|
|||
|
||||
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
||||
invalidInputError(
|
||||
False,
|
||||
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)},"
|
||||
f" but is {attn_output.size()}"
|
||||
)
|
||||
|
|
|
|||
|
|
@ -141,7 +141,8 @@ def qwen2_model_forward_internal(
|
|||
elif inputs_embeds is not None:
|
||||
batch_size, seq_length, _ = inputs_embeds.shape
|
||||
else:
|
||||
invalidInputError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
invalidInputError(False,
|
||||
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
||||
|
||||
if self.gradient_checkpointing and self.training:
|
||||
if use_cache:
|
||||
|
|
|
|||
|
|
@ -407,6 +407,7 @@ class SchedulerConfig:
|
|||
def _verify_args(self) -> None:
|
||||
if self.max_num_batched_tokens < self.max_model_len:
|
||||
invalidInputError(
|
||||
False,
|
||||
f"max_num_batched_tokens ({self.max_num_batched_tokens}) is "
|
||||
f"smaller than max_model_len ({self.max_model_len}). "
|
||||
"This effectively limits the maximum sequence length to "
|
||||
|
|
@ -415,6 +416,7 @@ class SchedulerConfig:
|
|||
"decrease max_model_len.")
|
||||
if self.max_num_batched_tokens < self.max_num_seqs:
|
||||
invalidInputError(
|
||||
False,
|
||||
f"max_num_batched_tokens ({self.max_num_batched_tokens}) must "
|
||||
"be greater than or equal to max_num_seqs "
|
||||
f"({self.max_num_seqs}).")
|
||||
|
|
|
|||
Loading…
Reference in a new issue