Optimize kv_cache for gpt-neox model family (#9015)
* override gptneox * style * move to utils * revert
This commit is contained in:
parent
48b503c630
commit
6981745fe4
4 changed files with 155 additions and 0 deletions
|
|
@ -3,6 +3,12 @@ All in one benchmark test allows users to test all the benchmarks and record the
|
|||
|
||||
Before running, make sure to have [bigdl-llm](../../../README.md) and [bigdl-nano](../../../../nano/README.md) installed.
|
||||
|
||||
## Dependencies
|
||||
```bash
|
||||
pip install omageconfig
|
||||
pip install pandas
|
||||
```
|
||||
|
||||
## Config
|
||||
Config YAML file has following format
|
||||
```yaml
|
||||
|
|
|
|||
|
|
@ -240,4 +240,11 @@ def optimize(model):
|
|||
baichuan_attention_forward_13b
|
||||
)
|
||||
|
||||
elif model.config.model_type == "gpt_neox":
|
||||
from bigdl.llm.transformers.models.gptneox import gptneox_attention_forward
|
||||
convert_forward(model,
|
||||
transformers.models.gpt_neox.modeling_gpt_neox.GPTNeoXAttention,
|
||||
gptneox_attention_forward
|
||||
)
|
||||
|
||||
return model
|
||||
|
|
|
|||
134
python/llm/src/bigdl/llm/transformers/models/gptneox.py
Normal file
134
python/llm/src/bigdl/llm/transformers/models/gptneox.py
Normal file
|
|
@ -0,0 +1,134 @@
|
|||
#
|
||||
# Copyright 2016 The BigDL Authors.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
#
|
||||
# Some parts of this file is adapted from
|
||||
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/gpt_neox/modeling_gpt_neox.py
|
||||
# which is licensed under Apache License 2.0:
|
||||
#
|
||||
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import torch
|
||||
from typing import Optional, Tuple
|
||||
from bigdl.llm.transformers.models.utils import apply_rotary_pos_emb
|
||||
from bigdl.llm.transformers.models.utils import create_kv_cache, append_kv_cache
|
||||
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
||||
def gptneox_attention_forward(
|
||||
self,
|
||||
hidden_states: torch.FloatTensor,
|
||||
attention_mask: torch.FloatTensor,
|
||||
position_ids: torch.LongTensor,
|
||||
head_mask: Optional[torch.FloatTensor] = None,
|
||||
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
||||
use_cache: Optional[bool] = False,
|
||||
output_attentions: Optional[bool] = False,
|
||||
):
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
has_layer_past = layer_past is not None
|
||||
|
||||
# Compute QKV
|
||||
# Attention heads [batch, seq_len, hidden_size]
|
||||
# --> [batch, seq_len, (np * 3 * head_size)]
|
||||
qkv = self.query_key_value(hidden_states)
|
||||
|
||||
# [batch, seq_len, (num_heads * 3 * head_size)]
|
||||
# --> [batch, seq_len, num_heads, 3 * head_size]
|
||||
new_qkv_shape = qkv.size()[:-1] + (self.num_attention_heads, 3 * self.head_size)
|
||||
qkv = qkv.view(*new_qkv_shape)
|
||||
|
||||
# [batch, seq_len, num_attention_heads, 3 * head_size]
|
||||
# --> 3 [batch, num_attention_heads, seq_len, head_size]
|
||||
query = qkv[..., : self.head_size].permute(0, 2, 1, 3)
|
||||
key = qkv[..., self.head_size: 2 * self.head_size].permute(0, 2, 1, 3)
|
||||
value = qkv[..., 2 * self.head_size:].permute(0, 2, 1, 3)
|
||||
|
||||
# Compute rotary embeddings on rotary_ndims
|
||||
query_rot = query[..., : self.rotary_ndims]
|
||||
query_pass = query[..., self.rotary_ndims:]
|
||||
key_rot = key[..., : self.rotary_ndims]
|
||||
key_pass = key[..., self.rotary_ndims:]
|
||||
|
||||
# Compute token offset for rotary embeddings (when decoding)
|
||||
seq_len = key.shape[-2]
|
||||
if has_layer_past:
|
||||
seq_len += layer_past[0].shape[-2]
|
||||
cos, sin = self.rotary_emb(value, seq_len=seq_len)
|
||||
query, key = apply_rotary_pos_emb(query_rot, key_rot, cos, sin, position_ids, "gpt_neox")
|
||||
query = torch.cat((query, query_pass), dim=-1)
|
||||
key = torch.cat((key, key_pass), dim=-1)
|
||||
|
||||
# Cache QKV values
|
||||
if has_layer_past:
|
||||
past_key = layer_past[0]
|
||||
past_value = layer_past[1]
|
||||
if past_key.stride()[1] <= past_key.size(2) * past_key.size(3):
|
||||
# allocate new
|
||||
new_past_key, new_past_value = create_kv_cache(bsz,
|
||||
self.num_attention_heads,
|
||||
self.head_size,
|
||||
past_key.size(2),
|
||||
seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=past_key.dtype,
|
||||
device=device)
|
||||
new_past_key[:] = past_key
|
||||
new_past_value[:] = past_value
|
||||
past_key = new_past_key
|
||||
past_value = new_past_value
|
||||
|
||||
key, value = append_kv_cache(past_key, past_value, key, value)
|
||||
elif use_cache:
|
||||
max_cache_length = seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key, new_value = create_kv_cache(bsz,
|
||||
self.num_attention_heads,
|
||||
self.head_size,
|
||||
seq_len,
|
||||
max_cache_length,
|
||||
dtype=key.dtype,
|
||||
device=device)
|
||||
new_key[:] = key
|
||||
new_value[:] = value
|
||||
key = new_key
|
||||
value = new_value
|
||||
|
||||
present = (key, value) if use_cache else None
|
||||
|
||||
# Compute attention
|
||||
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
||||
|
||||
# Reshape outputs
|
||||
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_size)
|
||||
attn_output = self.dense(attn_output)
|
||||
|
||||
outputs = (attn_output, present)
|
||||
if output_attentions:
|
||||
outputs += (attn_weights,)
|
||||
|
||||
return outputs
|
||||
|
|
@ -68,6 +68,14 @@ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, model_family):
|
|||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
elif model_family == "gpt_neox":
|
||||
gather_indices = position_ids[:, None, :, None] # [bs, 1, seq_len, 1]
|
||||
gather_indices = gather_indices.repeat(1, cos.shape[1], 1, cos.shape[3])
|
||||
cos = torch.gather(cos.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||
sin = torch.gather(sin.repeat(gather_indices.shape[0], 1, 1, 1), 2, gather_indices)
|
||||
q_embed = (q * cos) + (rotate_half(q) * sin)
|
||||
k_embed = (k * cos) + (rotate_half(k) * sin)
|
||||
return q_embed, k_embed
|
||||
else:
|
||||
invalidInputError(False,
|
||||
f"{model_family} is not supported.")
|
||||
|
|
|
|||
Loading…
Reference in a new issue