From 68a4be762f9880c8b742184d536fb7de4c1d1ae5 Mon Sep 17 00:00:00 2001 From: binbin Deng <108676127+plusbang@users.noreply.github.com> Date: Wed, 13 Dec 2023 23:24:59 +0800 Subject: [PATCH] remove disco mixtral, update oneapi version (#9671) --- .../modeling_moe_mistral.py | 1345 ----------------- .../Model/mixtral/README.md | 34 +- .../Model/mixtral/generate.py | 5 +- .../modeling_moe_mistral.py | 1345 ----------------- .../PyTorch-Models/Model/mixtral/README.md | 35 +- .../PyTorch-Models/Model/mixtral/generate.py | 5 +- python/llm/example/GPU/README.md | 2 +- 7 files changed, 13 insertions(+), 2758 deletions(-) delete mode 100644 python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py delete mode 100644 python/llm/example/GPU/PyTorch-Models/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py deleted file mode 100644 index 86c616d5..00000000 --- a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py +++ /dev/null @@ -1,1345 +0,0 @@ -# -# Copyright 2016 The BigDL Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -# =========================================================================== -# -# This file is adapted from https://huggingface.co/DiscoResearch/mixtral-7b-8expert/blob/main/configuration_moe_mistral.py -# -# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" PyTorch Mistral model.""" -import inspect -import math -import warnings -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss - -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache -from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, - logging, - replace_return_docstrings, -) -from .configuration_moe_mistral import MixtralConfig - -logger = logging.get_logger(__name__) - - -if is_flash_attn_2_available(): - try: - from flash_attn import flash_attn_func, flash_attn_varlen_func - from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa - - _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) - except ImportError: - logger.warn( - "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency " - "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm" - ) - -_CONFIG_FOR_DOC = "MixtralConfig" - - -# Copied from transformers.models.llama.modeling_llama._get_unpad_data -def _get_unpad_data(attention_mask): - seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) - indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() - max_seqlen_in_batch = seqlens_in_batch.max().item() - cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) - return ( - indices, - cu_seqlens, - max_seqlen_in_batch, - ) - - -# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral -class MistralRMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - MistralRMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral -class MistralRotaryEmbedding(nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache( - seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() - ) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - - freqs = torch.outer(t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) - - def forward(self, x, seq_len=None): - # x: [bs, num_attention_heads, seq_len, head_size] - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) - - return ( - self.cos_cached[:seq_len].to(dtype=x.dtype), - self.sin_cached[:seq_len].to(dtype=x.dtype), - ) - - -# Copied from transformers.models.llama.modeling_llama.rotate_half -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb -def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`): - The position indices of the tokens corresponding to the query and key tensors. For example, this can be - used to pass offsetted position ids when working with a KV-cache. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos[position_ids].unsqueeze(unsqueeze_dim) - sin = sin[position_ids].unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class FeedForward(nn.Module): - def __init__( - self, - config - ): - """ - Initialize the FeedForward module. - - Args: - dim (int): Input dimension. - hidden_dim (int): Hidden dimension of the feedforward layer. - multiple_of (int): Value to ensure hidden dimension is a multiple of this value. - ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. - - Attributes: - w1 (ColumnParallelLinear): Linear transformation for the first layer. - w2 (RowParallelLinear): Linear transformation for the second layer. - w3 (ColumnParallelLinear): Linear transformation for the third layer. - - """ - super().__init__() - - self.w1 = nn.Linear( - config.hidden_size, config.intermediate_size, bias=False - ) - self.w2 = nn.Linear( - config.intermediate_size, config.hidden_size, bias=False - ) - self.w3 = nn.Linear( - config.hidden_size, config.intermediate_size, bias=False - ) - - def forward(self, x): - return self.w2(F.silu(self.w1(x)) * self.w3(x)) - - -class MoE(nn.Module): - def __init__( - self, - config, - ): - super().__init__() - self.config = config - num_experts = config.num_experts - self.experts = nn.ModuleList([FeedForward(config) for i in range(num_experts)]) - self.gate = nn.Linear(config.hidden_size, num_experts, bias=False) - self.num_experts_per_token = config.num_experts_per_token - - def forward(self, x): - orig_shape = x.shape - x = x.view(-1, x.shape[-1]) - - scores = self.gate(x) - expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1) - expert_weights = expert_weights.softmax(dim=-1) - flat_expert_indices = expert_indices.view(-1) - - x = x.repeat_interleave(self.num_experts_per_token, dim=0) - y = torch.empty_like(x) - for i, expert in enumerate(self.experts): - y[flat_expert_indices == i] = expert(x[flat_expert_indices == i]) - y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1) - return y.view(*orig_shape) - - -# Copied from transformers.models.llama.modeling_llama.repeat_kv -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -class MistralAttention(nn.Module): - """ - Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer - and "Generating Long Sequences with Sparse Transformers". - """ - - def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None): - super().__init__() - self.config = config - self.layer_idx = layer_idx - if layer_idx is None: - logger.warning_once( - f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " - "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " - "when creating this class." - ) - - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - self.is_causal = True - self.attention_dropout = config.attention_dropout - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" - f" and `num_heads`: {self.num_heads})." - ) - self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) - - self.rotary_emb = MistralRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - if self.layer_idx is None: - raise ValueError( - f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " - "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " - "with a layer index." - ) - kv_seq_len += past_key_value.get_seq_length(self.layer_idx) - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class MistralFlashAttention2(MistralAttention): - """ - Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays - untouched. The only required change would be on the forward pass where it needs to correctly call the public API of - flash attention and deal with padding tokens in case the input contains any of them. - """ - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ): - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - - # overwrite attention_mask with padding_mask - attention_mask = kwargs.pop("padding_mask") - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value.get_seq_length(self.layer_idx) - - # Because the input can be padded, the absolute sequence length depends on the max position id. - rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 - cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) - - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - use_sliding_windows = ( - _flash_supports_window_size - and getattr(self.config, "sliding_window", None) is not None - and kv_seq_len > self.config.sliding_window - ) - - if not _flash_supports_window_size: - logger.warning_once( - "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" - " make sure to upgrade flash-attn library." - ) - - if past_key_value is not None: - # Activate slicing cache only if the config has a value `sliding_windows` attribute - if getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window: - slicing_tokens = 1 - self.config.sliding_window - - past_key = past_key_value[0] - past_value = past_key_value[1] - - past_key = past_key[:, :, slicing_tokens:, :].contiguous() - past_value = past_value[:, :, slicing_tokens:, :].contiguous() - - if past_key.shape[-2] != self.config.sliding_window - 1: - raise ValueError( - f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" - f" {past_key.shape}" - ) - - past_key_value = (past_key, past_value) - - if attention_mask is not None: - attention_mask = attention_mask[:, slicing_tokens:] - attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) - - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - dropout_rate = 0.0 if not self.training else self.attention_dropout - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in float16 just to be sure everything works as expected. - input_dtype = query_states.dtype - if input_dtype == torch.float32: - # Handle the case where the model is quantized - if hasattr(self.config, "_pre_quantization_dtype"): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.q_proj.weight.dtype - - logger.warning_once( - f"The input hidden states seems to be silently casted in float32, this might be related to" - f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" - f" {target_dtype}." - ) - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - # Reashape to the expected shape for Flash Attention - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - attn_output = self._flash_attention_forward( - query_states, - key_states, - value_states, - attention_mask, - q_len, - dropout=dropout_rate, - use_sliding_windows=use_sliding_windows, - ) - - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - def _flash_attention_forward( - self, - query_states, - key_states, - value_states, - attention_mask, - query_length, - dropout=0.0, - softmax_scale=None, - use_sliding_windows=False, - ): - """ - Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token - first unpad the input, then computes the attention scores and pad the final attention scores. - - Args: - query_states (`torch.Tensor`): - Input query states to be passed to Flash Attention API - key_states (`torch.Tensor`): - Input key states to be passed to Flash Attention API - value_states (`torch.Tensor`): - Input value states to be passed to Flash Attention API - attention_mask (`torch.Tensor`): - The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the - position of padding tokens and 1 for the position of non-padding tokens. - dropout (`int`, *optional*): - Attention dropout - softmax_scale (`float`, *optional*): - The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) - use_sliding_windows (`bool`, *optional*): - Whether to activate sliding window attention. - """ - if not self._flash_attn_uses_top_left_mask: - causal = self.is_causal - else: - # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. - causal = self.is_causal and query_length != 1 - - # Contains at least one padding token in the sequence - if attention_mask is not None: - batch_size = query_states.shape[0] - query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( - query_states, key_states, value_states, attention_mask, query_length - ) - - cu_seqlens_q, cu_seqlens_k = cu_seq_lens - max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens - - if not use_sliding_windows: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) - else: - if not use_sliding_windows: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - return attn_output - - def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): - batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape - - # On the first iteration we need to properly re-create the padding mask - # by slicing it on the proper place - if kv_seq_len != attention_mask.shape[-1]: - attention_mask_num_tokens = attention_mask.shape[-1] - attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] - - indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) - - key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - - if query_length == kv_seq_len: - query_layer = index_first_axis( - query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k - ) - cu_seqlens_q = cu_seqlens_k - max_seqlen_in_batch_q = max_seqlen_in_batch_k - indices_q = indices_k - elif query_length == 1: - max_seqlen_in_batch_q = 1 - cu_seqlens_q = torch.arange( - batch_size + 1, dtype=torch.int32, device=query_layer.device - ) # There is a memcpy here, that is very bad. - indices_q = cu_seqlens_q[:-1] - query_layer = query_layer.squeeze(1) - else: - # The -q_len: slice assumes left padding. - attention_mask = attention_mask[:, -query_length:] - query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) - - return ( - query_layer, - key_layer, - value_layer, - indices_q, - (cu_seqlens_q, cu_seqlens_k), - (max_seqlen_in_batch_q, max_seqlen_in_batch_k), - ) - - -class MistralDecoderLayer(nn.Module): - def __init__(self, config: MixtralConfig, layer_idx: int): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = ( - MistralAttention(config=config, layer_idx=layer_idx) - if not getattr(config, "_flash_attn_2_enabled", False) - else MistralFlashAttention2(config, layer_idx=layer_idx) - ) - self.mlp = MoE(config) - self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - **kwargs, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, sequence_length)` where padding elements are indicated by 0. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs - - -MISTRAL_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`MixtralConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare Mistral Model outputting raw hidden-states without any specific head on top.", - MISTRAL_START_DOCSTRING, -) -class MistralPreTrainedModel(PreTrainedModel): - config_class = MixtralConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["MistralDecoderLayer"] - _skip_keys_device_placement = "past_key_values" - _supports_flash_attn_2 = True - _supports_cache_class = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - -MISTRAL_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): - Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` - returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. - - Two formats are allowed: - - a [`~cache_utils.Cache`] instance; - - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy - cache format. - - The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the - legacy cache format will be returned. - - If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't - have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` - of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare Mistral Model outputting raw hidden-states without any specific head on top.", - MISTRAL_START_DOCSTRING, -) -class MistralModel(MistralPreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] - - Args: - config: MixtralConfig - """ - - def __init__(self, config: MixtralConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList( - [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) - self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if use_cache: - use_legacy_cache = not isinstance(past_key_values, Cache) - if use_legacy_cache: - past_key_values = DynamicCache.from_legacy_cache(past_key_values) - past_key_values_length = past_key_values.get_seq_length() - seq_length_with_past = seq_length_with_past + past_key_values_length - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device - ) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - - if ( - attention_mask is not None - and hasattr(self.config, "_flash_attn_2_enabled") - and self.config._flash_attn_2_enabled - and use_cache - ): - is_padding_right = attention_mask[:, -1].sum().item() != batch_size - if is_padding_right: - raise ValueError( - "You are attempting to perform batched generation with padding_side='right'" - " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " - " call `tokenizer.padding_side = 'left'` before tokenizing the input. " - ) - - if getattr(self.config, "_flash_attn_2_enabled", False): - # 2d mask is passed through the layers - attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None - else: - # 4d mask is passed through the layers - attention_mask = _prepare_4d_causal_attention_mask( - attention_mask, - (batch_size, seq_length), - inputs_embeds, - past_key_values_length - ) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - - for decoder_layer in self.layers: - if output_hidden_states: - all_hidden_states += (hidden_states,) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - attention_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache = layer_outputs[2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = None - if use_cache: - next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache - - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class MixtralForCausalLM(MistralPreTrainedModel): - _tied_weights_keys = ["lm_head.weight"] - - def __init__(self, config): - super().__init__(config) - self.model = MistralModel(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - def _init_weights(self, module): - return - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, MistralForCausalLM - - >>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - logits = self.lm_head(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs - ): - # Omit tokens covered by past_key_values - if past_key_values is not None: - if isinstance(past_key_values, Cache): - cache_length = past_key_values.get_seq_length() - past_length = past_key_values.seen_tokens - else: - cache_length = past_length = past_key_values[0][0].shape[2] - - # Keep only the unprocessed tokens: - # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where - # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as - # input) - if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: - input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] - # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard - # input_ids based on the past_length. - elif past_length < input_ids.shape[1]: - input_ids = input_ids[:, past_length:] - # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. - - # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the - # older attention values, as their corresponding values are not part of the input. - if cache_length < past_length and attention_mask is not None: - attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -input_ids.shape[1] :] - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += ( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), - ) - return reordered_past - - -@add_start_docstrings( - """ - The Mistral Model transformer with a sequence classification head on top (linear layer). - - [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - MISTRAL_START_DOCSTRING, -) -# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL -class MistralForSequenceClassification(MistralPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = MistralModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( - logits.device - ) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/README.md b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/README.md index 5f5096e2..7cda38c2 100644 --- a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/README.md +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/README.md @@ -1,5 +1,5 @@ # Mixtral -In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Mixtral models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) as reference Mixtral models. +In this directory, you will find examples on how you could apply BigDL-LLM INT4 optimizations on Mixtral models on [Intel GPUs](../README.md). For illustration purposes, we utilize the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) as a reference Mixtral model. ## Requirements To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. @@ -24,29 +24,12 @@ pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-w pip install transformers==4.36.0 ``` -### (Optional) 2. Download Model and Replace File -To run [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) model on Intel GPU, we have provided an updated version [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py) of `modeling_moe_mistral.py`. - -#### 2.1 Download Model -You could use the following code to download [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert). - -```python -from huggingface_hub import snapshot_download - -# for DiscoResearch/mixtral-7b-8expert -model_path = snapshot_download(repo_id='DiscoResearch/mixtral-7b-8expert') -print(f'DiscoResearch/mixtral-7b-8expert checkpoint is downloaded to {model_path}') -``` - -#### 2.2 Replace `modeling_moe_mistral.py` -For `DiscoResearch/mixtral-7b-8expert`, you should replace the `modeling_moe_mistral.py` with [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py). - -### 3. Configures OneAPI environment variables +### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` -### 4. Run +### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. @@ -61,7 +44,7 @@ python ./generate.py --prompt 'What is AI?' In the example, several arguments can be passed to satisfy your requirements: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1` and `DiscoResearch/mixtral-7b-8expert`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mistralai/Mixtral-8x7B-Instruct-v0.1'`. For model `DiscoResearch/mixtral-7b-8expert`, you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mistralai/Mixtral-8x7B-Instruct-v0.1'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. @@ -72,12 +55,3 @@ Inference time: xxxx s -------------------- Output -------------------- [INST] What is AI? [/INST] AI, or Artificial Intelligence, refers to the development of computer systems that can perform tasks that would normally require human intelligence to accomplish. These tasks can include things ``` - -#### [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) -```log -Inference time: xxxx s --------------------- Output -------------------- -[INST] What is AI? [/INST] - -[INST] Artificial Intelligence (AI) is the ability of a computer program or a machine to think and learn. It is also a field of -``` diff --git a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/generate.py b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/generate.py index 3855b6a5..405b18a0 100644 --- a/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/generate.py +++ b/python/llm/example/GPU/HF-Transformers-AutoModels/Model/mixtral/generate.py @@ -29,9 +29,8 @@ MIXTRAL_PROMPT_FORMAT = """[INST] {prompt} [/INST]""" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mixtral model') parser.add_argument('--repo-id-or-model-path', type=str, default="'mistralai/Mixtral-8x7B-Instruct-v0.1'", - help='The huggingface repo id for the Mixtral (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1` and `DiscoResearch/mixtral-7b-8expert`) to be downloaded,' - ', or the path to the huggingface checkpoint folder. For model `DiscoResearch/mixtral-7b-8expert`, ' - 'you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.') + help='The huggingface repo id for the Mixtral (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1`) to be downloaded,' + ', or the path to the huggingface checkpoint folder.') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, diff --git a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py b/python/llm/example/GPU/PyTorch-Models/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py deleted file mode 100644 index 86c616d5..00000000 --- a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py +++ /dev/null @@ -1,1345 +0,0 @@ -# -# Copyright 2016 The BigDL Authors. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -# - -# =========================================================================== -# -# This file is adapted from https://huggingface.co/DiscoResearch/mixtral-7b-8expert/blob/main/configuration_moe_mistral.py -# -# Copyright 2023 Mistral AI and the HuggingFace Inc. team. All rights reserved. -# -# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX -# and OPT implementations in this library. It has been modified from its -# original forms to accommodate minor architectural differences compared -# to GPT-NeoX and OPT used by the Meta AI team that trained the model. -# -# Licensed under the Apache License, Version 2.0 (the "License"); -# you may not use this file except in compliance with the License. -# You may obtain a copy of the License at -# -# http://www.apache.org/licenses/LICENSE-2.0 -# -# Unless required by applicable law or agreed to in writing, software -# distributed under the License is distributed on an "AS IS" BASIS, -# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -# See the License for the specific language governing permissions and -# limitations under the License. -""" PyTorch Mistral model.""" -import inspect -import math -import warnings -from typing import List, Optional, Tuple, Union - -import torch -import torch.nn.functional as F -import torch.utils.checkpoint -from torch import nn -from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss - -from transformers.activations import ACT2FN -from transformers.cache_utils import Cache, DynamicCache -from transformers.modeling_attn_mask_utils import _prepare_4d_causal_attention_mask -from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutputWithPast -from transformers.modeling_utils import PreTrainedModel -from transformers.utils import ( - add_start_docstrings, - add_start_docstrings_to_model_forward, - is_flash_attn_2_available, - is_flash_attn_greater_or_equal_2_10, - logging, - replace_return_docstrings, -) -from .configuration_moe_mistral import MixtralConfig - -logger = logging.get_logger(__name__) - - -if is_flash_attn_2_available(): - try: - from flash_attn import flash_attn_func, flash_attn_varlen_func - from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa - - _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters) - except ImportError: - logger.warn( - "Warning: import flash_attn rms_norm fail, please install FlashAttention layer_norm to get higher efficiency " - "https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm" - ) - -_CONFIG_FOR_DOC = "MixtralConfig" - - -# Copied from transformers.models.llama.modeling_llama._get_unpad_data -def _get_unpad_data(attention_mask): - seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) - indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() - max_seqlen_in_batch = seqlens_in_batch.max().item() - cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)) - return ( - indices, - cu_seqlens, - max_seqlen_in_batch, - ) - - -# Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Mistral -class MistralRMSNorm(nn.Module): - def __init__(self, hidden_size, eps=1e-6): - """ - MistralRMSNorm is equivalent to T5LayerNorm - """ - super().__init__() - self.weight = nn.Parameter(torch.ones(hidden_size)) - self.variance_epsilon = eps - - def forward(self, hidden_states): - input_dtype = hidden_states.dtype - hidden_states = hidden_states.to(torch.float32) - variance = hidden_states.pow(2).mean(-1, keepdim=True) - hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) - return self.weight * hidden_states.to(input_dtype) - - -# Copied from transformers.models.llama.modeling_llama.LlamaRotaryEmbedding with Llama->Mistral -class MistralRotaryEmbedding(nn.Module): - def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): - super().__init__() - - self.dim = dim - self.max_position_embeddings = max_position_embeddings - self.base = base - inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)) - self.register_buffer("inv_freq", inv_freq, persistent=False) - - # Build here to make `torch.jit.trace` work. - self._set_cos_sin_cache( - seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype() - ) - - def _set_cos_sin_cache(self, seq_len, device, dtype): - self.max_seq_len_cached = seq_len - t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype) - - freqs = torch.outer(t, self.inv_freq) - # Different from paper, but it uses a different permutation in order to obtain the same calculation - emb = torch.cat((freqs, freqs), dim=-1) - self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) - self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) - - def forward(self, x, seq_len=None): - # x: [bs, num_attention_heads, seq_len, head_size] - if seq_len > self.max_seq_len_cached: - self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) - - return ( - self.cos_cached[:seq_len].to(dtype=x.dtype), - self.sin_cached[:seq_len].to(dtype=x.dtype), - ) - - -# Copied from transformers.models.llama.modeling_llama.rotate_half -def rotate_half(x): - """Rotates half the hidden dims of the input.""" - x1 = x[..., : x.shape[-1] // 2] - x2 = x[..., x.shape[-1] // 2 :] - return torch.cat((-x2, x1), dim=-1) - - -# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb -def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): - """Applies Rotary Position Embedding to the query and key tensors. - - Args: - q (`torch.Tensor`): The query tensor. - k (`torch.Tensor`): The key tensor. - cos (`torch.Tensor`): The cosine part of the rotary embedding. - sin (`torch.Tensor`): The sine part of the rotary embedding. - position_ids (`torch.Tensor`): - The position indices of the tokens corresponding to the query and key tensors. For example, this can be - used to pass offsetted position ids when working with a KV-cache. - unsqueeze_dim (`int`, *optional*, defaults to 1): - The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and - sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note - that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and - k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes - cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have - the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. - Returns: - `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. - """ - cos = cos[position_ids].unsqueeze(unsqueeze_dim) - sin = sin[position_ids].unsqueeze(unsqueeze_dim) - q_embed = (q * cos) + (rotate_half(q) * sin) - k_embed = (k * cos) + (rotate_half(k) * sin) - return q_embed, k_embed - - -class FeedForward(nn.Module): - def __init__( - self, - config - ): - """ - Initialize the FeedForward module. - - Args: - dim (int): Input dimension. - hidden_dim (int): Hidden dimension of the feedforward layer. - multiple_of (int): Value to ensure hidden dimension is a multiple of this value. - ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. - - Attributes: - w1 (ColumnParallelLinear): Linear transformation for the first layer. - w2 (RowParallelLinear): Linear transformation for the second layer. - w3 (ColumnParallelLinear): Linear transformation for the third layer. - - """ - super().__init__() - - self.w1 = nn.Linear( - config.hidden_size, config.intermediate_size, bias=False - ) - self.w2 = nn.Linear( - config.intermediate_size, config.hidden_size, bias=False - ) - self.w3 = nn.Linear( - config.hidden_size, config.intermediate_size, bias=False - ) - - def forward(self, x): - return self.w2(F.silu(self.w1(x)) * self.w3(x)) - - -class MoE(nn.Module): - def __init__( - self, - config, - ): - super().__init__() - self.config = config - num_experts = config.num_experts - self.experts = nn.ModuleList([FeedForward(config) for i in range(num_experts)]) - self.gate = nn.Linear(config.hidden_size, num_experts, bias=False) - self.num_experts_per_token = config.num_experts_per_token - - def forward(self, x): - orig_shape = x.shape - x = x.view(-1, x.shape[-1]) - - scores = self.gate(x) - expert_weights, expert_indices = torch.topk(scores, self.num_experts_per_token, dim=-1) - expert_weights = expert_weights.softmax(dim=-1) - flat_expert_indices = expert_indices.view(-1) - - x = x.repeat_interleave(self.num_experts_per_token, dim=0) - y = torch.empty_like(x) - for i, expert in enumerate(self.experts): - y[flat_expert_indices == i] = expert(x[flat_expert_indices == i]) - y = (y.view(*expert_weights.shape, -1) * expert_weights.unsqueeze(-1)).sum(dim=1) - return y.view(*orig_shape) - - -# Copied from transformers.models.llama.modeling_llama.repeat_kv -def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: - """ - This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, - num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) - """ - batch, num_key_value_heads, slen, head_dim = hidden_states.shape - if n_rep == 1: - return hidden_states - hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) - return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) - - -class MistralAttention(nn.Module): - """ - Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer - and "Generating Long Sequences with Sparse Transformers". - """ - - def __init__(self, config: MixtralConfig, layer_idx: Optional[int] = None): - super().__init__() - self.config = config - self.layer_idx = layer_idx - if layer_idx is None: - logger.warning_once( - f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " - "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " - "when creating this class." - ) - - self.hidden_size = config.hidden_size - self.num_heads = config.num_attention_heads - self.head_dim = self.hidden_size // self.num_heads - self.num_key_value_heads = config.num_key_value_heads - self.num_key_value_groups = self.num_heads // self.num_key_value_heads - self.max_position_embeddings = config.max_position_embeddings - self.rope_theta = config.rope_theta - self.is_causal = True - self.attention_dropout = config.attention_dropout - - if (self.head_dim * self.num_heads) != self.hidden_size: - raise ValueError( - f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}" - f" and `num_heads`: {self.num_heads})." - ) - self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False) - self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) - self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False) - - self.rotary_emb = MistralRotaryEmbedding( - self.head_dim, - max_position_embeddings=self.max_position_embeddings, - base=self.rope_theta, - ) - - def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): - return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - if self.layer_idx is None: - raise ValueError( - f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " - "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " - "with a layer index." - ) - kv_seq_len += past_key_value.get_seq_length(self.layer_idx) - cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - if past_key_value is not None: - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - - attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim) - - if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): - raise ValueError( - f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" - f" {attn_weights.size()}" - ) - - if attention_mask is not None: - if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): - raise ValueError( - f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" - ) - - attn_weights = attn_weights + attention_mask - - # upcast attention to fp32 - attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype) - attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training) - attn_output = torch.matmul(attn_weights, value_states) - - if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim): - raise ValueError( - f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is" - f" {attn_output.size()}" - ) - - attn_output = attn_output.transpose(1, 2).contiguous() - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) - - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - -class MistralFlashAttention2(MistralAttention): - """ - Mistral flash attention module. This module inherits from `MistralAttention` as the weights of the module stays - untouched. The only required change would be on the forward pass where it needs to correctly call the public API of - flash attention and deal with padding tokens in case the input contains any of them. - """ - - # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ - def __init__(self, *args, **kwargs): - super().__init__(*args, **kwargs) - - # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. - # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. - # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). - self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Cache] = None, - output_attentions: bool = False, - use_cache: bool = False, - **kwargs, - ): - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - - # overwrite attention_mask with padding_mask - attention_mask = kwargs.pop("padding_mask") - bsz, q_len, _ = hidden_states.size() - - query_states = self.q_proj(hidden_states) - key_states = self.k_proj(hidden_states) - value_states = self.v_proj(hidden_states) - - query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2) - key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2) - - kv_seq_len = key_states.shape[-2] - if past_key_value is not None: - kv_seq_len += past_key_value.get_seq_length(self.layer_idx) - - # Because the input can be padded, the absolute sequence length depends on the max position id. - rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1 - cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len) - - query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) - - use_sliding_windows = ( - _flash_supports_window_size - and getattr(self.config, "sliding_window", None) is not None - and kv_seq_len > self.config.sliding_window - ) - - if not _flash_supports_window_size: - logger.warning_once( - "The current flash attention version does not support sliding window attention, for a more memory efficient implementation" - " make sure to upgrade flash-attn library." - ) - - if past_key_value is not None: - # Activate slicing cache only if the config has a value `sliding_windows` attribute - if getattr(self.config, "sliding_window", None) is not None and kv_seq_len > self.config.sliding_window: - slicing_tokens = 1 - self.config.sliding_window - - past_key = past_key_value[0] - past_value = past_key_value[1] - - past_key = past_key[:, :, slicing_tokens:, :].contiguous() - past_value = past_value[:, :, slicing_tokens:, :].contiguous() - - if past_key.shape[-2] != self.config.sliding_window - 1: - raise ValueError( - f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got" - f" {past_key.shape}" - ) - - past_key_value = (past_key, past_value) - - if attention_mask is not None: - attention_mask = attention_mask[:, slicing_tokens:] - attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1) - - cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models - key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) - - # repeat k/v heads if n_kv_heads < n_heads - key_states = repeat_kv(key_states, self.num_key_value_groups) - value_states = repeat_kv(value_states, self.num_key_value_groups) - dropout_rate = 0.0 if not self.training else self.attention_dropout - - # In PEFT, usually we cast the layer norms in float32 for training stability reasons - # therefore the input hidden states gets silently casted in float32. Hence, we need - # cast them back in float16 just to be sure everything works as expected. - input_dtype = query_states.dtype - if input_dtype == torch.float32: - # Handle the case where the model is quantized - if hasattr(self.config, "_pre_quantization_dtype"): - target_dtype = self.config._pre_quantization_dtype - else: - target_dtype = self.q_proj.weight.dtype - - logger.warning_once( - f"The input hidden states seems to be silently casted in float32, this might be related to" - f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" - f" {target_dtype}." - ) - - query_states = query_states.to(target_dtype) - key_states = key_states.to(target_dtype) - value_states = value_states.to(target_dtype) - - # Reashape to the expected shape for Flash Attention - query_states = query_states.transpose(1, 2) - key_states = key_states.transpose(1, 2) - value_states = value_states.transpose(1, 2) - - attn_output = self._flash_attention_forward( - query_states, - key_states, - value_states, - attention_mask, - q_len, - dropout=dropout_rate, - use_sliding_windows=use_sliding_windows, - ) - - attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous() - attn_output = self.o_proj(attn_output) - - if not output_attentions: - attn_weights = None - - return attn_output, attn_weights, past_key_value - - def _flash_attention_forward( - self, - query_states, - key_states, - value_states, - attention_mask, - query_length, - dropout=0.0, - softmax_scale=None, - use_sliding_windows=False, - ): - """ - Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token - first unpad the input, then computes the attention scores and pad the final attention scores. - - Args: - query_states (`torch.Tensor`): - Input query states to be passed to Flash Attention API - key_states (`torch.Tensor`): - Input key states to be passed to Flash Attention API - value_states (`torch.Tensor`): - Input value states to be passed to Flash Attention API - attention_mask (`torch.Tensor`): - The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the - position of padding tokens and 1 for the position of non-padding tokens. - dropout (`int`, *optional*): - Attention dropout - softmax_scale (`float`, *optional*): - The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) - use_sliding_windows (`bool`, *optional*): - Whether to activate sliding window attention. - """ - if not self._flash_attn_uses_top_left_mask: - causal = self.is_causal - else: - # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. - causal = self.is_causal and query_length != 1 - - # Contains at least one padding token in the sequence - if attention_mask is not None: - batch_size = query_states.shape[0] - query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( - query_states, key_states, value_states, attention_mask, query_length - ) - - cu_seqlens_q, cu_seqlens_k = cu_seq_lens - max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens - - if not use_sliding_windows: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output_unpad = flash_attn_varlen_func( - query_states, - key_states, - value_states, - cu_seqlens_q=cu_seqlens_q, - cu_seqlens_k=cu_seqlens_k, - max_seqlen_q=max_seqlen_in_batch_q, - max_seqlen_k=max_seqlen_in_batch_k, - dropout_p=dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) - else: - if not use_sliding_windows: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - ) - else: - attn_output = flash_attn_func( - query_states, - key_states, - value_states, - dropout, - softmax_scale=softmax_scale, - causal=causal, - window_size=(self.config.sliding_window, self.config.sliding_window), - ) - - return attn_output - - def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): - batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape - - # On the first iteration we need to properly re-create the padding mask - # by slicing it on the proper place - if kv_seq_len != attention_mask.shape[-1]: - attention_mask_num_tokens = attention_mask.shape[-1] - attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :] - - indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) - - key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k) - - if query_length == kv_seq_len: - query_layer = index_first_axis( - query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k - ) - cu_seqlens_q = cu_seqlens_k - max_seqlen_in_batch_q = max_seqlen_in_batch_k - indices_q = indices_k - elif query_length == 1: - max_seqlen_in_batch_q = 1 - cu_seqlens_q = torch.arange( - batch_size + 1, dtype=torch.int32, device=query_layer.device - ) # There is a memcpy here, that is very bad. - indices_q = cu_seqlens_q[:-1] - query_layer = query_layer.squeeze(1) - else: - # The -q_len: slice assumes left padding. - attention_mask = attention_mask[:, -query_length:] - query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) - - return ( - query_layer, - key_layer, - value_layer, - indices_q, - (cu_seqlens_q, cu_seqlens_k), - (max_seqlen_in_batch_q, max_seqlen_in_batch_k), - ) - - -class MistralDecoderLayer(nn.Module): - def __init__(self, config: MixtralConfig, layer_idx: int): - super().__init__() - self.hidden_size = config.hidden_size - self.self_attn = ( - MistralAttention(config=config, layer_idx=layer_idx) - if not getattr(config, "_flash_attn_2_enabled", False) - else MistralFlashAttention2(config, layer_idx=layer_idx) - ) - self.mlp = MoE(config) - self.input_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - self.post_attention_layernorm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - def forward( - self, - hidden_states: torch.Tensor, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_value: Optional[Tuple[torch.Tensor]] = None, - output_attentions: Optional[bool] = False, - use_cache: Optional[bool] = False, - **kwargs, - ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]: - if "padding_mask" in kwargs: - warnings.warn( - "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" - ) - """ - Args: - hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` - attention_mask (`torch.FloatTensor`, *optional*): attention mask of size - `(batch, sequence_length)` where padding elements are indicated by 0. - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under - returned tensors for more detail. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding - (see `past_key_values`). - past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states - """ - - residual = hidden_states - - hidden_states = self.input_layernorm(hidden_states) - - # Self Attention - hidden_states, self_attn_weights, present_key_value = self.self_attn( - hidden_states=hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_value, - output_attentions=output_attentions, - use_cache=use_cache, - ) - hidden_states = residual + hidden_states - - # Fully Connected - residual = hidden_states - hidden_states = self.post_attention_layernorm(hidden_states) - hidden_states = self.mlp(hidden_states) - hidden_states = residual + hidden_states - - outputs = (hidden_states,) - - if output_attentions: - outputs += (self_attn_weights,) - - if use_cache: - outputs += (present_key_value,) - - return outputs - - -MISTRAL_START_DOCSTRING = r""" - This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the - library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads - etc.) - - This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. - Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage - and behavior. - - Parameters: - config ([`MixtralConfig`]): - Model configuration class with all the parameters of the model. Initializing with a config file does not - load the weights associated with the model, only the configuration. Check out the - [`~PreTrainedModel.from_pretrained`] method to load the model weights. -""" - - -@add_start_docstrings( - "The bare Mistral Model outputting raw hidden-states without any specific head on top.", - MISTRAL_START_DOCSTRING, -) -class MistralPreTrainedModel(PreTrainedModel): - config_class = MixtralConfig - base_model_prefix = "model" - supports_gradient_checkpointing = True - _no_split_modules = ["MistralDecoderLayer"] - _skip_keys_device_placement = "past_key_values" - _supports_flash_attn_2 = True - _supports_cache_class = True - - def _init_weights(self, module): - std = self.config.initializer_range - if isinstance(module, nn.Linear): - module.weight.data.normal_(mean=0.0, std=std) - if module.bias is not None: - module.bias.data.zero_() - elif isinstance(module, nn.Embedding): - module.weight.data.normal_(mean=0.0, std=std) - if module.padding_idx is not None: - module.weight.data[module.padding_idx].zero_() - - -MISTRAL_INPUTS_DOCSTRING = r""" - Args: - input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): - Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide - it. - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - [What are input IDs?](../glossary#input-ids) - attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): - Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - - - 1 for tokens that are **not masked**, - - 0 for tokens that are **masked**. - - [What are attention masks?](../glossary#attention-mask) - - Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and - [`PreTrainedTokenizer.__call__`] for details. - - If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see - `past_key_values`). - - If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] - and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more - information on the default strategy. - - - 1 indicates the head is **not masked**, - - 0 indicates the head is **masked**. - position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, - config.n_positions - 1]`. - - [What are position IDs?](../glossary#position-ids) - past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): - Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention - blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` - returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. - - Two formats are allowed: - - a [`~cache_utils.Cache`] instance; - - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of - shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy - cache format. - - The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the - legacy cache format will be returned. - - If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't - have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` - of shape `(batch_size, sequence_length)`. - inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): - Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This - is useful if you want more control over how to convert `input_ids` indices into associated vectors than the - model's internal embedding lookup matrix. - use_cache (`bool`, *optional*): - If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see - `past_key_values`). - output_attentions (`bool`, *optional*): - Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned - tensors for more detail. - output_hidden_states (`bool`, *optional*): - Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for - more detail. - return_dict (`bool`, *optional*): - Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. -""" - - -@add_start_docstrings( - "The bare Mistral Model outputting raw hidden-states without any specific head on top.", - MISTRAL_START_DOCSTRING, -) -class MistralModel(MistralPreTrainedModel): - """ - Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`MistralDecoderLayer`] - - Args: - config: MixtralConfig - """ - - def __init__(self, config: MixtralConfig): - super().__init__(config) - self.padding_idx = config.pad_token_id - self.vocab_size = config.vocab_size - - self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) - self.layers = nn.ModuleList( - [MistralDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] - ) - self.norm = MistralRMSNorm(config.hidden_size, eps=config.rms_norm_eps) - - self.gradient_checkpointing = False - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.embed_tokens - - def set_input_embeddings(self, value): - self.embed_tokens = value - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, BaseModelOutputWithPast]: - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - use_cache = use_cache if use_cache is not None else self.config.use_cache - - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # retrieve input_ids and inputs_embeds - if input_ids is not None and inputs_embeds is not None: - raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") - elif input_ids is not None: - batch_size, seq_length = input_ids.shape - elif inputs_embeds is not None: - batch_size, seq_length, _ = inputs_embeds.shape - else: - raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") - - seq_length_with_past = seq_length - past_key_values_length = 0 - - if use_cache: - use_legacy_cache = not isinstance(past_key_values, Cache) - if use_legacy_cache: - past_key_values = DynamicCache.from_legacy_cache(past_key_values) - past_key_values_length = past_key_values.get_seq_length() - seq_length_with_past = seq_length_with_past + past_key_values_length - - if position_ids is None: - device = input_ids.device if input_ids is not None else inputs_embeds.device - position_ids = torch.arange( - past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device - ) - position_ids = position_ids.unsqueeze(0).view(-1, seq_length) - else: - position_ids = position_ids.view(-1, seq_length).long() - - if inputs_embeds is None: - inputs_embeds = self.embed_tokens(input_ids) - - if ( - attention_mask is not None - and hasattr(self.config, "_flash_attn_2_enabled") - and self.config._flash_attn_2_enabled - and use_cache - ): - is_padding_right = attention_mask[:, -1].sum().item() != batch_size - if is_padding_right: - raise ValueError( - "You are attempting to perform batched generation with padding_side='right'" - " this may lead to unexpected behaviour for Flash Attention version of Mistral. Make sure to " - " call `tokenizer.padding_side = 'left'` before tokenizing the input. " - ) - - if getattr(self.config, "_flash_attn_2_enabled", False): - # 2d mask is passed through the layers - attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None - else: - # 4d mask is passed through the layers - attention_mask = _prepare_4d_causal_attention_mask( - attention_mask, - (batch_size, seq_length), - inputs_embeds, - past_key_values_length - ) - - hidden_states = inputs_embeds - - if self.gradient_checkpointing and self.training: - if use_cache: - logger.warning_once( - "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." - ) - use_cache = False - - # decoder layers - all_hidden_states = () if output_hidden_states else None - all_self_attns = () if output_attentions else None - next_decoder_cache = None - - for decoder_layer in self.layers: - if output_hidden_states: - all_hidden_states += (hidden_states,) - - if self.gradient_checkpointing and self.training: - layer_outputs = self._gradient_checkpointing_func( - decoder_layer.__call__, - hidden_states, - attention_mask, - position_ids, - past_key_values, - output_attentions, - use_cache, - ) - else: - layer_outputs = decoder_layer( - hidden_states, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_value=past_key_values, - output_attentions=output_attentions, - use_cache=use_cache, - ) - - hidden_states = layer_outputs[0] - - if use_cache: - next_decoder_cache = layer_outputs[2 if output_attentions else 1] - - if output_attentions: - all_self_attns += (layer_outputs[1],) - - hidden_states = self.norm(hidden_states) - - # add hidden states from the last decoder layer - if output_hidden_states: - all_hidden_states += (hidden_states,) - - next_cache = None - if use_cache: - next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache - - if not return_dict: - return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None) - return BaseModelOutputWithPast( - last_hidden_state=hidden_states, - past_key_values=next_cache, - hidden_states=all_hidden_states, - attentions=all_self_attns, - ) - - -class MixtralForCausalLM(MistralPreTrainedModel): - _tied_weights_keys = ["lm_head.weight"] - - def __init__(self, config): - super().__init__(config) - self.model = MistralModel(config) - self.vocab_size = config.vocab_size - self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - def get_output_embeddings(self): - return self.lm_head - - def set_output_embeddings(self, new_embeddings): - self.lm_head = new_embeddings - - def set_decoder(self, decoder): - self.model = decoder - - def get_decoder(self): - return self.model - - def _init_weights(self, module): - return - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - @replace_return_docstrings(output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, CausalLMOutputWithPast]: - r""" - Args: - labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): - Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., - config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored - (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. - - Returns: - - Example: - - ```python - >>> from transformers import AutoTokenizer, MistralForCausalLM - - >>> model = MistralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) - >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) - - >>> prompt = "Hey, are you conscious? Can you talk to me?" - >>> inputs = tokenizer(prompt, return_tensors="pt") - - >>> # Generate - >>> generate_ids = model.generate(inputs.input_ids, max_length=30) - >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] - "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." - ```""" - - output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions - output_hidden_states = ( - output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states - ) - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) - outputs = self.model( - input_ids=input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - - hidden_states = outputs[0] - logits = self.lm_head(hidden_states) - logits = logits.float() - - loss = None - if labels is not None: - # Shift so that tokens < n predict n - shift_logits = logits[..., :-1, :].contiguous() - shift_labels = labels[..., 1:].contiguous() - # Flatten the tokens - loss_fct = CrossEntropyLoss() - shift_logits = shift_logits.view(-1, self.config.vocab_size) - shift_labels = shift_labels.view(-1) - # Enable model parallelism - shift_labels = shift_labels.to(shift_logits.device) - loss = loss_fct(shift_logits, shift_labels) - - if not return_dict: - output = (logits,) + outputs[1:] - return (loss,) + output if loss is not None else output - - return CausalLMOutputWithPast( - loss=loss, - logits=logits, - past_key_values=outputs.past_key_values, - hidden_states=outputs.hidden_states, - attentions=outputs.attentions, - ) - - def prepare_inputs_for_generation( - self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs - ): - # Omit tokens covered by past_key_values - if past_key_values is not None: - if isinstance(past_key_values, Cache): - cache_length = past_key_values.get_seq_length() - past_length = past_key_values.seen_tokens - else: - cache_length = past_length = past_key_values[0][0].shape[2] - - # Keep only the unprocessed tokens: - # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where - # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as - # input) - if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: - input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] - # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard - # input_ids based on the past_length. - elif past_length < input_ids.shape[1]: - input_ids = input_ids[:, past_length:] - # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. - - # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the - # older attention values, as their corresponding values are not part of the input. - if cache_length < past_length and attention_mask is not None: - attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] - - position_ids = kwargs.get("position_ids", None) - if attention_mask is not None and position_ids is None: - # create position_ids on the fly for batch generation - position_ids = attention_mask.long().cumsum(-1) - 1 - position_ids.masked_fill_(attention_mask == 0, 1) - if past_key_values: - position_ids = position_ids[:, -input_ids.shape[1] :] - - # if `inputs_embeds` are passed, we only want to use them in the 1st generation step - if inputs_embeds is not None and past_key_values is None: - model_inputs = {"inputs_embeds": inputs_embeds} - else: - model_inputs = {"input_ids": input_ids} - - model_inputs.update( - { - "position_ids": position_ids, - "past_key_values": past_key_values, - "use_cache": kwargs.get("use_cache"), - "attention_mask": attention_mask, - } - ) - return model_inputs - - @staticmethod - def _reorder_cache(past_key_values, beam_idx): - reordered_past = () - for layer_past in past_key_values: - reordered_past += ( - tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), - ) - return reordered_past - - -@add_start_docstrings( - """ - The Mistral Model transformer with a sequence classification head on top (linear layer). - - [`MistralForSequenceClassification`] uses the last token in order to do the classification, as other causal models - (e.g. GPT-2) do. - - Since it does classification on the last token, it requires to know the position of the last token. If a - `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If - no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the - padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in - each row of the batch). - """, - MISTRAL_START_DOCSTRING, -) -# Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->Mistral, LLAMA->MISTRAL -class MistralForSequenceClassification(MistralPreTrainedModel): - def __init__(self, config): - super().__init__(config) - self.num_labels = config.num_labels - self.model = MistralModel(config) - self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) - - # Initialize weights and apply final processing - self.post_init() - - def get_input_embeddings(self): - return self.model.embed_tokens - - def set_input_embeddings(self, value): - self.model.embed_tokens = value - - @add_start_docstrings_to_model_forward(MISTRAL_INPUTS_DOCSTRING) - def forward( - self, - input_ids: torch.LongTensor = None, - attention_mask: Optional[torch.Tensor] = None, - position_ids: Optional[torch.LongTensor] = None, - past_key_values: Optional[List[torch.FloatTensor]] = None, - inputs_embeds: Optional[torch.FloatTensor] = None, - labels: Optional[torch.LongTensor] = None, - use_cache: Optional[bool] = None, - output_attentions: Optional[bool] = None, - output_hidden_states: Optional[bool] = None, - return_dict: Optional[bool] = None, - ) -> Union[Tuple, SequenceClassifierOutputWithPast]: - r""" - labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): - Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., - config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If - `config.num_labels > 1` a classification loss is computed (Cross-Entropy). - """ - return_dict = return_dict if return_dict is not None else self.config.use_return_dict - - transformer_outputs = self.model( - input_ids, - attention_mask=attention_mask, - position_ids=position_ids, - past_key_values=past_key_values, - inputs_embeds=inputs_embeds, - use_cache=use_cache, - output_attentions=output_attentions, - output_hidden_states=output_hidden_states, - return_dict=return_dict, - ) - hidden_states = transformer_outputs[0] - logits = self.score(hidden_states) - - if input_ids is not None: - batch_size = input_ids.shape[0] - else: - batch_size = inputs_embeds.shape[0] - - if self.config.pad_token_id is None and batch_size != 1: - raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") - if self.config.pad_token_id is None: - sequence_lengths = -1 - else: - if input_ids is not None: - sequence_lengths = (torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1).to( - logits.device - ) - else: - sequence_lengths = -1 - - pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths] - - loss = None - if labels is not None: - labels = labels.to(logits.device) - if self.config.problem_type is None: - if self.num_labels == 1: - self.config.problem_type = "regression" - elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): - self.config.problem_type = "single_label_classification" - else: - self.config.problem_type = "multi_label_classification" - - if self.config.problem_type == "regression": - loss_fct = MSELoss() - if self.num_labels == 1: - loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) - else: - loss = loss_fct(pooled_logits, labels) - elif self.config.problem_type == "single_label_classification": - loss_fct = CrossEntropyLoss() - loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) - elif self.config.problem_type == "multi_label_classification": - loss_fct = BCEWithLogitsLoss() - loss = loss_fct(pooled_logits, labels) - if not return_dict: - output = (pooled_logits,) + transformer_outputs[1:] - return ((loss,) + output) if loss is not None else output - - return SequenceClassifierOutputWithPast( - loss=loss, - logits=pooled_logits, - past_key_values=transformer_outputs.past_key_values, - hidden_states=transformer_outputs.hidden_states, - attentions=transformer_outputs.attentions, - ) diff --git a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/README.md b/python/llm/example/GPU/PyTorch-Models/Model/mixtral/README.md index f5093576..791cffaf 100644 --- a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/README.md +++ b/python/llm/example/GPU/PyTorch-Models/Model/mixtral/README.md @@ -1,5 +1,5 @@ # Mixtral -In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Mixtral models. For illustration purposes, we utilize the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) and [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) as reference Mixtral models. +In this directory, you will find examples on how you could use BigDL-LLM `optimize_model` API to accelerate Mixtral models. For illustration purposes, we utilize the [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) as a reference Mixtral model. ## Requirements To run these examples with BigDL-LLM on Intel GPUs, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information. @@ -24,30 +24,12 @@ pip install --pre --upgrade bigdl-llm[xpu] -f https://developer.intel.com/ipex-w pip install transformers==4.36.0 ``` -### (Optional) 2. Download Model and Replace File -To run [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) model on Intel GPU, we have provided an updated version [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py) of `modeling_moe_mistral.py`. - - -#### 2.1 Download Model -You could use the following code to download [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert). - -```python -from huggingface_hub import snapshot_download - -# for DiscoResearch/mixtral-7b-8expert -model_path = snapshot_download(repo_id='DiscoResearch/mixtral-7b-8expert') -print(f'DiscoResearch/mixtral-7b-8expert checkpoint is downloaded to {model_path}') -``` - -#### 2.2 Replace `modeling_moe_mistral.py` -For `DiscoResearch/mixtral-7b-8expert`, you should replace the `modeling_moe_mistral.py` with [DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py](./DiscoResearch-mixtral-7b-8expert/modeling_moe_mistral.py). - -### 3. Configures OneAPI environment variables +### 2. Configures OneAPI environment variables ```bash source /opt/intel/oneapi/setvars.sh ``` -### 4. Run +### 3. Run For optimal performance on Arc, it is recommended to set several environment variables. @@ -62,7 +44,7 @@ python ./generate.py --prompt 'What is AI?' In the example, several arguments can be passed to satisfy your requirements: -- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1` and `DiscoResearch/mixtral-7b-8expert`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mistralai/Mixtral-8x7B-Instruct-v0.1'`. For model `DiscoResearch/mixtral-7b-8expert`, you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced. +- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the Mixtral model (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'mistralai/Mixtral-8x7B-Instruct-v0.1'`. - `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is AI?'`. - `--n-predict N_PREDICT`: argument defining the max number of tokens to predict. It is default to be `32`. @@ -73,12 +55,3 @@ Inference time: xxxx s -------------------- Output -------------------- [INST] What is AI? [/INST] AI, or Artificial Intelligence, refers to the development of computer systems that can perform tasks that would normally require human intelligence to accomplish. These tasks can include things ``` - -#### [DiscoResearch/mixtral-7b-8expert](https://huggingface.co/DiscoResearch/mixtral-7b-8expert) -```log -Inference time: xxxx s --------------------- Output -------------------- -[INST] What is AI? [/INST] - -[INST] Artificial Intelligence (AI) is the ability of a computer program or a machine to think and learn. It is also a field of -``` diff --git a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/generate.py b/python/llm/example/GPU/PyTorch-Models/Model/mixtral/generate.py index e2fb7c90..f969ed47 100644 --- a/python/llm/example/GPU/PyTorch-Models/Model/mixtral/generate.py +++ b/python/llm/example/GPU/PyTorch-Models/Model/mixtral/generate.py @@ -29,9 +29,8 @@ MIXTRAL_PROMPT_FORMAT = """[INST] {prompt} [/INST]""" if __name__ == '__main__': parser = argparse.ArgumentParser(description='Predict Tokens using `generate()` API for Mixtral model') parser.add_argument('--repo-id-or-model-path', type=str, default="'mistralai/Mixtral-8x7B-Instruct-v0.1'", - help='The huggingface repo id for the Mixtral (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1` and `DiscoResearch/mixtral-7b-8expert`) to be downloaded,' - ', or the path to the huggingface checkpoint folder. For model `DiscoResearch/mixtral-7b-8expert`, ' - 'you should input the path to the model folder in which `modeling_moe_mistral.py` has been replaced.') + help='The huggingface repo id for the Mixtral (e.g. `mistralai/Mixtral-8x7B-Instruct-v0.1`) to be downloaded,' + ', or the path to the huggingface checkpoint folder.') parser.add_argument('--prompt', type=str, default="What is AI?", help='Prompt to infer') parser.add_argument('--n-predict', type=int, default=32, diff --git a/python/llm/example/GPU/README.md b/python/llm/example/GPU/README.md index 2a5d0dbc..38b4f207 100644 --- a/python/llm/example/GPU/README.md +++ b/python/llm/example/GPU/README.md @@ -25,7 +25,7 @@ Step 1, please refer to our [driver installation](https://dgpu-docs.intel.com/dr > **Note**: IPEX 2.0.110+xpu requires Intel GPU Driver version is [Stable 647.21](https://dgpu-docs.intel.com/releases/stable_647_21_20230714.html). Step 2, you also need to download and install [Intel® oneAPI Base Toolkit](https://www.intel.com/content/www/us/en/developer/tools/oneapi/base-toolkit-download.html). OneMKL and DPC++ compiler are needed, others are optional. -> **Note**: IPEX 2.0.110+xpu requires Intel® oneAPI Base Toolkit's version >= 2023.2.0. +> **Note**: IPEX 2.0.110+xpu requires Intel® oneAPI Base Toolkit's version == 2023.2.0. ## Best Known Configuration on Linux For better performance, it is recommended to set environment variables on Linux: