refactor to simplify following upgrade 2 (#12685)
This commit is contained in:
		
							parent
							
								
									2673792de6
								
							
						
					
					
						commit
						68857494a5
					
				
					 6 changed files with 33 additions and 376 deletions
				
			
		| 
						 | 
				
			
			@ -1590,6 +1590,9 @@ def _optimize_post(model):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2ForCausalLM,
 | 
			
		||||
                        qwen2_causal_lm_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2Model,
 | 
			
		||||
                        qwen2_model_forward)
 | 
			
		||||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2RMSNorm,
 | 
			
		||||
                        rms_norm_forward)
 | 
			
		||||
| 
						 | 
				
			
			@ -1602,12 +1605,6 @@ def _optimize_post(model):
 | 
			
		|||
        convert_forward(model,
 | 
			
		||||
                        module.Qwen2SdpaAttention,
 | 
			
		||||
                        qwen2_attention_forward)
 | 
			
		||||
        if version.parse(trans_version) >= version.parse("4.42"):
 | 
			
		||||
            from ipex_llm.transformers.models.qwen2 import qwen2_model_forward_4_42
 | 
			
		||||
            convert_forward(model, module.Qwen2Model, qwen2_model_forward_4_42)
 | 
			
		||||
        else:
 | 
			
		||||
            from ipex_llm.transformers.models.qwen2 import qwen2_model_forward
 | 
			
		||||
            convert_forward(model, module.Qwen2Model, qwen2_model_forward)
 | 
			
		||||
    elif model.config.model_type == "qwen2_moe":
 | 
			
		||||
        # for Qwen1.5-MOE-A2.7B
 | 
			
		||||
        modeling_module_name = model.__class__.__module__
 | 
			
		||||
| 
						 | 
				
			
			@ -1819,9 +1816,7 @@ def _optimize_post(model):
 | 
			
		|||
        from ipex_llm.transformers.models.phi3 import attention_forward
 | 
			
		||||
        convert_forward(model, module.Phi3Attention, attention_forward)
 | 
			
		||||
        convert_forward(model, module.Phi3SdpaAttention, attention_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.phi3 import mlp_forward
 | 
			
		||||
        convert_forward(model, module.Phi3MLP, mlp_forward)
 | 
			
		||||
        from ipex_llm.transformers.models.common import rms_norm_forward
 | 
			
		||||
        convert_forward(model, module.Phi3MLP, mlp_silu_forward)
 | 
			
		||||
        convert_forward(model, module.Phi3RMSNorm, rms_norm_forward)
 | 
			
		||||
        if model.config.model_type == "phi3":
 | 
			
		||||
            from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -30,8 +30,7 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp
 | 
			
		|||
from ipex_llm.transformers.models.utils import update_past_key_value
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
 | 
			
		||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
 | 
			
		||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicCompressFp8Cache, DynamicCompressCache
 | 
			
		||||
import warnings
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -113,21 +113,6 @@ def internlm_attention_forward(
 | 
			
		|||
    return attn_output, attn_weights, past_key_value
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
			
		||||
    """
 | 
			
		||||
    This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
 | 
			
		||||
    The hidden states go from (batch,
 | 
			
		||||
    num_key_value_heads, seqlen, head_dim) to
 | 
			
		||||
    (batch, num_attention_heads, seqlen, head_dim)
 | 
			
		||||
    """
 | 
			
		||||
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | 
			
		||||
    if n_rep == 1:
 | 
			
		||||
        return hidden_states
 | 
			
		||||
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
 | 
			
		||||
                                                           n_rep, slen, head_dim)
 | 
			
		||||
    return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def internlm2_attention_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.Tensor,
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -39,7 +39,6 @@ import warnings
 | 
			
		|||
from ipex_llm.transformers.models.common import attention_softmax
 | 
			
		||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, rotate_half
 | 
			
		||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
 | 
			
		||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
 | 
			
		||||
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
 | 
			
		||||
| 
						 | 
				
			
			@ -213,24 +212,8 @@ def split_mlp(module: torch.nn.Module):
 | 
			
		|||
 | 
			
		||||
        del module.gate_up_proj
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def mlp_forward(
 | 
			
		||||
    self,
 | 
			
		||||
    hidden_states: torch.FloatTensor
 | 
			
		||||
) -> torch.FloatTensor:
 | 
			
		||||
    x_2d = hidden_states.view(-1, hidden_states.shape[-1])
 | 
			
		||||
    qtype = getattr(self.gate_proj, "qtype", None)
 | 
			
		||||
    if mlp_fusion_check(x_2d, qtype, self.training):
 | 
			
		||||
        x_2d = x_2d.contiguous()
 | 
			
		||||
        import xe_linear
 | 
			
		||||
        return self.down_proj(xe_linear.mlp_forward_xpu(
 | 
			
		||||
            x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
 | 
			
		||||
            x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
 | 
			
		||||
            SILU, qtype
 | 
			
		||||
        ))
 | 
			
		||||
    return self.down_proj(
 | 
			
		||||
        self.activation_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)
 | 
			
		||||
    )
 | 
			
		||||
        # rename activation function
 | 
			
		||||
        module.act_fn = module.activation_fn
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def phi3_model_forward_wrapper(origin_model_forward):
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -51,16 +51,11 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
 | 
			
		|||
    should_use_compresskv, is_enough_kv_cache_room_4_36
 | 
			
		||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
 | 
			
		||||
    DynamicCompressCache, DynamicCompressFp8Cache
 | 
			
		||||
from ipex_llm.utils.common import invalidInputError
 | 
			
		||||
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2Attention, Qwen2MLP
 | 
			
		||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
 | 
			
		||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
 | 
			
		||||
from transformers.cache_utils import Cache
 | 
			
		||||
from transformers import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = logging.get_logger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_model_forward(
 | 
			
		||||
| 
						 | 
				
			
			@ -74,50 +69,18 @@ def qwen2_model_forward(
 | 
			
		|||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,  # for transformers >= 4.42
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    # retrieve input_ids and inputs_embeds
 | 
			
		||||
    if input_ids is not None and inputs_embeds is not None:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You cannot specify both input_ids and inputs_embeds at the same time")
 | 
			
		||||
    elif input_ids is not None:
 | 
			
		||||
        batch_size, seq_length = input_ids.shape
 | 
			
		||||
    elif inputs_embeds is not None:
 | 
			
		||||
        batch_size, seq_length, _ = inputs_embeds.shape
 | 
			
		||||
    else:
 | 
			
		||||
        invalidInputError(False,
 | 
			
		||||
                          "You have to specify either decoder_input_ids or decoder_inputs_embeds")
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            logger.warning_once(
 | 
			
		||||
                "`use_cache=True` is incompatible with gradient checkpointing. "
 | 
			
		||||
                "Setting `use_cache=False`..."
 | 
			
		||||
            )
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    past_key_values_length = 0
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
    # IPEX-LLM OPT start: kv cache and quantize kv cache
 | 
			
		||||
    inputs = input_ids if input_ids is not None else inputs_embeds
 | 
			
		||||
    num_heads, num_kv_heads = self.config.num_attention_heads, self.config.num_key_value_heads
 | 
			
		||||
    use_quantize_kv = (
 | 
			
		||||
        self.config.hidden_size != 3584     # disable quantize kv in specific model
 | 
			
		||||
        and use_quantize_kv_cache(self.layers[0].mlp.up_proj, inputs, num_heads, num_kv_heads)
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
    use_cache = True if inputs.device.type == "xpu" else use_cache
 | 
			
		||||
 | 
			
		||||
    use_quantize_kv = self.config.hidden_size != 3584 and use_quantize_kv_cache(
 | 
			
		||||
        self.layers[0].mlp.down_proj, inputs,
 | 
			
		||||
        self.config.num_attention_heads, self.config.num_key_value_heads
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    use_compress_kv = should_use_compresskv(inputs, inputs.shape[1]) or \
 | 
			
		||||
        isinstance(past_key_values, DynamicCompressCache)
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -133,274 +96,26 @@ def qwen2_model_forward(
 | 
			
		|||
        if not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
 | 
			
		||||
                                                                          DynamicNormalCache):
 | 
			
		||||
            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        past_key_values_length = past_key_values.get_usable_length(seq_length)
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        device = input_ids.device if input_ids is not None else inputs_embeds.device
 | 
			
		||||
        position_ids = torch.arange(
 | 
			
		||||
            past_key_values_length, seq_length + past_key_values_length,
 | 
			
		||||
            dtype=torch.long, device=device
 | 
			
		||||
        )
 | 
			
		||||
        position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
 | 
			
		||||
    # `cache_position` is required after transformers 4.42
 | 
			
		||||
    if cache_position is not None:
 | 
			
		||||
        kwargs = {"cache_position": cache_position}
 | 
			
		||||
    else:
 | 
			
		||||
        position_ids = position_ids.view(-1, seq_length).long()
 | 
			
		||||
        kwargs = {}
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    flash_attn_2 = self._attn_implementation == "flash_attention_2"
 | 
			
		||||
    if attention_mask is not None and flash_attn_2 and use_cache:
 | 
			
		||||
 | 
			
		||||
        is_padding_right = attention_mask[:, -1].sum().item() != batch_size
 | 
			
		||||
        if is_padding_right:
 | 
			
		||||
            invalidInputError(
 | 
			
		||||
                False,
 | 
			
		||||
                "You are attempting to perform batched generation with padding_side='right'"
 | 
			
		||||
                " this may lead to unexpected behaviour for Flash Attention version of Qwen2."
 | 
			
		||||
                " Make sure to  call `tokenizer.padding_side  = 'left'` before tokenizing "
 | 
			
		||||
                "the input. "
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
 | 
			
		||||
    from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: don't generate `attention_mask` in decode phase
 | 
			
		||||
    if seq_length == 1:
 | 
			
		||||
        attention_mask = None
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
    elif self._attn_implementation == "flash_attention_2":
 | 
			
		||||
        # 2d mask is passed through the layers
 | 
			
		||||
        attention_mask = attention_mask if (attention_mask is not None and
 | 
			
		||||
                                            0 in attention_mask) else None
 | 
			
		||||
    elif self._attn_implementation == "sdpa" and not output_attentions:
 | 
			
		||||
        # output_attentions=True can not be supported when using SDPA, and we fall back on
 | 
			
		||||
        # the manual implementation that requires a 4D causal mask in all cases.
 | 
			
		||||
        attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
 | 
			
		||||
            attention_mask,
 | 
			
		||||
            (batch_size, seq_length),
 | 
			
		||||
            inputs_embeds,
 | 
			
		||||
            past_key_values_length,
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        # 4d mask is passed through the layers
 | 
			
		||||
        attention_mask = _prepare_4d_causal_attention_mask(
 | 
			
		||||
            attention_mask,
 | 
			
		||||
            (batch_size, seq_length),
 | 
			
		||||
            inputs_embeds,
 | 
			
		||||
            past_key_values_length,
 | 
			
		||||
            sliding_window=self.config.sliding_window,
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            # ipex-llm changes
 | 
			
		||||
            curr_device = decoder_layer.input_layernorm.weight.device
 | 
			
		||||
            if attention_mask is not None:
 | 
			
		||||
                attention_mask = attention_mask.to(curr_device)
 | 
			
		||||
            if position_ids is not None:
 | 
			
		||||
                position_ids = position_ids.to(curr_device)
 | 
			
		||||
            # ipex-llm changes end
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
    return Qwen2Model.forward(
 | 
			
		||||
        self=self,
 | 
			
		||||
        input_ids=input_ids,
 | 
			
		||||
        attention_mask=attention_mask,
 | 
			
		||||
        position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
                output_attentions=output_attentions,
 | 
			
		||||
        past_key_values=past_key_values,
 | 
			
		||||
        inputs_embeds=inputs_embeds,
 | 
			
		||||
        use_cache=use_cache,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: remove `to_legacy_cache`
 | 
			
		||||
    next_cache = None
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        next_cache = next_decoder_cache
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def qwen2_model_forward_4_42(
 | 
			
		||||
    self,
 | 
			
		||||
    input_ids: torch.LongTensor = None,
 | 
			
		||||
    attention_mask: Optional[torch.Tensor] = None,
 | 
			
		||||
    position_ids: Optional[torch.LongTensor] = None,
 | 
			
		||||
    past_key_values: Optional[List[torch.FloatTensor]] = None,
 | 
			
		||||
    inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
			
		||||
    use_cache: Optional[bool] = None,
 | 
			
		||||
    output_attentions: Optional[bool] = None,
 | 
			
		||||
    output_hidden_states: Optional[bool] = None,
 | 
			
		||||
    return_dict: Optional[bool] = None,
 | 
			
		||||
    cache_position: Optional[torch.LongTensor] = None,
 | 
			
		||||
) -> Union[Tuple, BaseModelOutputWithPast]:
 | 
			
		||||
    output_attentions = (
 | 
			
		||||
        output_attentions if output_attentions is not None
 | 
			
		||||
        else self.config.output_attentions
 | 
			
		||||
    )
 | 
			
		||||
    output_hidden_states = (
 | 
			
		||||
        output_hidden_states if output_hidden_states is not None
 | 
			
		||||
        else self.config.output_hidden_states
 | 
			
		||||
    )
 | 
			
		||||
    use_cache = use_cache if use_cache is not None else self.config.use_cache
 | 
			
		||||
 | 
			
		||||
    return_dict = return_dict if return_dict is not None else self.config.use_return_dict
 | 
			
		||||
 | 
			
		||||
    invalidInputError(
 | 
			
		||||
        (input_ids is None) ^ (inputs_embeds is None),
 | 
			
		||||
        "You cannot specify both input_ids and inputs_embeds at the same time, "
 | 
			
		||||
        "and must specify either one"
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    if self.gradient_checkpointing and self.training:
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            logger.warning_once(
 | 
			
		||||
                "`use_cache=True` is incompatible with gradient checkpointing. "
 | 
			
		||||
                "Setting `use_cache=False`..."
 | 
			
		||||
            )
 | 
			
		||||
            use_cache = False
 | 
			
		||||
 | 
			
		||||
    if inputs_embeds is None:
 | 
			
		||||
        inputs_embeds = self.embed_tokens(input_ids)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start
 | 
			
		||||
    # IPEX-LLM OPT: kv cache and quantize kv cache
 | 
			
		||||
    num_heads, num_kv_heads = self.config.num_attention_heads, self.config.num_key_value_heads
 | 
			
		||||
    use_quantize_kv = (
 | 
			
		||||
        self.config.hidden_size != 3584     # disable quantize kv in specific model
 | 
			
		||||
        and use_quantize_kv_cache(self.layers[0].mlp.up_proj, inputs_embeds,
 | 
			
		||||
                                  num_heads, num_kv_heads)
 | 
			
		||||
    )
 | 
			
		||||
    use_compress_kv = should_use_compresskv(inputs_embeds, inputs_embeds.shape[1]) or \
 | 
			
		||||
        isinstance(past_key_values, DynamicCompressCache)
 | 
			
		||||
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        if use_compress_kv and not isinstance(past_key_values, DynamicCompressCache):
 | 
			
		||||
            if use_quantize_kv:
 | 
			
		||||
                past_key_values = DynamicCompressFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
            else:
 | 
			
		||||
                past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
 | 
			
		||||
        elif use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
 | 
			
		||||
                                                                        DynamicFp8Cache):
 | 
			
		||||
            past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
 | 
			
		||||
        if not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
 | 
			
		||||
                                                                          DynamicNormalCache):
 | 
			
		||||
            past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if cache_position is None:
 | 
			
		||||
        past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | 
			
		||||
        cache_position = torch.arange(
 | 
			
		||||
            past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | 
			
		||||
        )
 | 
			
		||||
    if position_ids is None:
 | 
			
		||||
        position_ids = cache_position.unsqueeze(0)
 | 
			
		||||
 | 
			
		||||
    causal_mask = self._update_causal_mask(
 | 
			
		||||
        attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
    hidden_states = inputs_embeds
 | 
			
		||||
 | 
			
		||||
    # decoder layers
 | 
			
		||||
    all_hidden_states = () if output_hidden_states else None
 | 
			
		||||
    all_self_attns = () if output_attentions else None
 | 
			
		||||
    next_decoder_cache = None
 | 
			
		||||
 | 
			
		||||
    for decoder_layer in self.layers:
 | 
			
		||||
        if output_hidden_states:
 | 
			
		||||
            all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
        if self.gradient_checkpointing and self.training:
 | 
			
		||||
            layer_outputs = self._gradient_checkpointing_func(
 | 
			
		||||
                decoder_layer.__call__,
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                causal_mask,
 | 
			
		||||
                position_ids,
 | 
			
		||||
                past_key_values,
 | 
			
		||||
                output_attentions,
 | 
			
		||||
                use_cache,
 | 
			
		||||
                cache_position,
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            layer_outputs = decoder_layer(
 | 
			
		||||
                hidden_states,
 | 
			
		||||
                attention_mask=causal_mask,
 | 
			
		||||
                position_ids=position_ids,
 | 
			
		||||
                past_key_value=past_key_values,
 | 
			
		||||
        output_attentions=output_attentions,
 | 
			
		||||
                use_cache=use_cache,
 | 
			
		||||
                cache_position=cache_position,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        hidden_states = layer_outputs[0]
 | 
			
		||||
 | 
			
		||||
        if use_cache:
 | 
			
		||||
            next_decoder_cache = layer_outputs[2 if output_attentions else 1]
 | 
			
		||||
 | 
			
		||||
        if output_attentions:
 | 
			
		||||
            all_self_attns += (layer_outputs[1],)
 | 
			
		||||
 | 
			
		||||
    hidden_states = self.norm(hidden_states)
 | 
			
		||||
 | 
			
		||||
    # add hidden states from the last decoder layer
 | 
			
		||||
    if output_hidden_states:
 | 
			
		||||
        all_hidden_states += (hidden_states,)
 | 
			
		||||
 | 
			
		||||
    # ipex-llm changes start: remove `to_legacy_cache`
 | 
			
		||||
    next_cache = None
 | 
			
		||||
    if use_cache:
 | 
			
		||||
        next_cache = next_decoder_cache
 | 
			
		||||
    # ipex-llm changes end
 | 
			
		||||
 | 
			
		||||
    if not return_dict:
 | 
			
		||||
        return tuple(v for v in [hidden_states, next_cache,
 | 
			
		||||
                                 all_hidden_states, all_self_attns] if v is not None)
 | 
			
		||||
    return BaseModelOutputWithPast(
 | 
			
		||||
        last_hidden_state=hidden_states,
 | 
			
		||||
        past_key_values=next_cache,
 | 
			
		||||
        hidden_states=all_hidden_states,
 | 
			
		||||
        attentions=all_self_attns,
 | 
			
		||||
        output_hidden_states=output_hidden_states,
 | 
			
		||||
        return_dict=return_dict,
 | 
			
		||||
        **kwargs
 | 
			
		||||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -272,26 +272,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
 | 
			
		|||
    )
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def fp16_fusion_check(proj, x, training):
 | 
			
		||||
    # only use fp16 fusion on PVC inference
 | 
			
		||||
    if proj is None:
 | 
			
		||||
        return False
 | 
			
		||||
    if not hasattr(proj, "qtype"):
 | 
			
		||||
        return False
 | 
			
		||||
    if proj.qtype != ggml_tensor_qtype["fp16"]:
 | 
			
		||||
        return False
 | 
			
		||||
    if proj.weight_type != 2:
 | 
			
		||||
        return False
 | 
			
		||||
    if training:
 | 
			
		||||
        return False
 | 
			
		||||
    if x.requires_grad:
 | 
			
		||||
        return False
 | 
			
		||||
    device_type = get_xpu_device_name(x.device)
 | 
			
		||||
    if device_type != "pvc":
 | 
			
		||||
        return False
 | 
			
		||||
    return True
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | 
			
		||||
    batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | 
			
		||||
    if n_rep == 1:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue