refactor to simplify following upgrade 2 (#12685)
This commit is contained in:
parent
2673792de6
commit
68857494a5
6 changed files with 33 additions and 376 deletions
|
|
@ -1590,6 +1590,9 @@ def _optimize_post(model):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.Qwen2ForCausalLM,
|
module.Qwen2ForCausalLM,
|
||||||
qwen2_causal_lm_forward)
|
qwen2_causal_lm_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.Qwen2Model,
|
||||||
|
qwen2_model_forward)
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.Qwen2RMSNorm,
|
module.Qwen2RMSNorm,
|
||||||
rms_norm_forward)
|
rms_norm_forward)
|
||||||
|
|
@ -1602,12 +1605,6 @@ def _optimize_post(model):
|
||||||
convert_forward(model,
|
convert_forward(model,
|
||||||
module.Qwen2SdpaAttention,
|
module.Qwen2SdpaAttention,
|
||||||
qwen2_attention_forward)
|
qwen2_attention_forward)
|
||||||
if version.parse(trans_version) >= version.parse("4.42"):
|
|
||||||
from ipex_llm.transformers.models.qwen2 import qwen2_model_forward_4_42
|
|
||||||
convert_forward(model, module.Qwen2Model, qwen2_model_forward_4_42)
|
|
||||||
else:
|
|
||||||
from ipex_llm.transformers.models.qwen2 import qwen2_model_forward
|
|
||||||
convert_forward(model, module.Qwen2Model, qwen2_model_forward)
|
|
||||||
elif model.config.model_type == "qwen2_moe":
|
elif model.config.model_type == "qwen2_moe":
|
||||||
# for Qwen1.5-MOE-A2.7B
|
# for Qwen1.5-MOE-A2.7B
|
||||||
modeling_module_name = model.__class__.__module__
|
modeling_module_name = model.__class__.__module__
|
||||||
|
|
@ -1819,9 +1816,7 @@ def _optimize_post(model):
|
||||||
from ipex_llm.transformers.models.phi3 import attention_forward
|
from ipex_llm.transformers.models.phi3 import attention_forward
|
||||||
convert_forward(model, module.Phi3Attention, attention_forward)
|
convert_forward(model, module.Phi3Attention, attention_forward)
|
||||||
convert_forward(model, module.Phi3SdpaAttention, attention_forward)
|
convert_forward(model, module.Phi3SdpaAttention, attention_forward)
|
||||||
from ipex_llm.transformers.models.phi3 import mlp_forward
|
convert_forward(model, module.Phi3MLP, mlp_silu_forward)
|
||||||
convert_forward(model, module.Phi3MLP, mlp_forward)
|
|
||||||
from ipex_llm.transformers.models.common import rms_norm_forward
|
|
||||||
convert_forward(model, module.Phi3RMSNorm, rms_norm_forward)
|
convert_forward(model, module.Phi3RMSNorm, rms_norm_forward)
|
||||||
if model.config.model_type == "phi3":
|
if model.config.model_type == "phi3":
|
||||||
from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
|
from ipex_llm.transformers.models.phi3 import phi3_model_forward_wrapper
|
||||||
|
|
|
||||||
|
|
@ -30,8 +30,7 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp
|
||||||
from ipex_llm.transformers.models.utils import update_past_key_value
|
from ipex_llm.transformers.models.utils import update_past_key_value
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope
|
||||||
from ipex_llm.transformers.models.utils import use_sdp
|
from ipex_llm.transformers.models.utils import use_sdp
|
||||||
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb, SILU
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
|
||||||
from ipex_llm.transformers.models.utils import mlp_fusion_check
|
|
||||||
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
|
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.kv import DynamicCompressFp8Cache, DynamicCompressCache
|
from ipex_llm.transformers.kv import DynamicCompressFp8Cache, DynamicCompressCache
|
||||||
import warnings
|
import warnings
|
||||||
|
|
|
||||||
|
|
@ -113,21 +113,6 @@ def internlm_attention_forward(
|
||||||
return attn_output, attn_weights, past_key_value
|
return attn_output, attn_weights, past_key_value
|
||||||
|
|
||||||
|
|
||||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
||||||
"""
|
|
||||||
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep).
|
|
||||||
The hidden states go from (batch,
|
|
||||||
num_key_value_heads, seqlen, head_dim) to
|
|
||||||
(batch, num_attention_heads, seqlen, head_dim)
|
|
||||||
"""
|
|
||||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
|
||||||
if n_rep == 1:
|
|
||||||
return hidden_states
|
|
||||||
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads,
|
|
||||||
n_rep, slen, head_dim)
|
|
||||||
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
|
||||||
|
|
||||||
|
|
||||||
def internlm2_attention_forward(
|
def internlm2_attention_forward(
|
||||||
self,
|
self,
|
||||||
hidden_states: torch.Tensor,
|
hidden_states: torch.Tensor,
|
||||||
|
|
|
||||||
|
|
@ -39,7 +39,6 @@ import warnings
|
||||||
from ipex_llm.transformers.models.common import attention_softmax
|
from ipex_llm.transformers.models.common import attention_softmax
|
||||||
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
from ipex_llm.transformers.models.common import scaled_dot_product_attention
|
||||||
from ipex_llm.transformers.models.utils import should_use_fuse_rope, rotate_half
|
from ipex_llm.transformers.models.utils import should_use_fuse_rope, rotate_half
|
||||||
from ipex_llm.transformers.models.utils import mlp_fusion_check, SILU
|
|
||||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal
|
||||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||||
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
|
from ipex_llm.transformers.models.utils import should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
|
|
@ -213,24 +212,8 @@ def split_mlp(module: torch.nn.Module):
|
||||||
|
|
||||||
del module.gate_up_proj
|
del module.gate_up_proj
|
||||||
|
|
||||||
|
# rename activation function
|
||||||
def mlp_forward(
|
module.act_fn = module.activation_fn
|
||||||
self,
|
|
||||||
hidden_states: torch.FloatTensor
|
|
||||||
) -> torch.FloatTensor:
|
|
||||||
x_2d = hidden_states.view(-1, hidden_states.shape[-1])
|
|
||||||
qtype = getattr(self.gate_proj, "qtype", None)
|
|
||||||
if mlp_fusion_check(x_2d, qtype, self.training):
|
|
||||||
x_2d = x_2d.contiguous()
|
|
||||||
import xe_linear
|
|
||||||
return self.down_proj(xe_linear.mlp_forward_xpu(
|
|
||||||
x_2d, self.gate_proj.weight.data, self.up_proj.weight.data,
|
|
||||||
x_2d.shape[0], x_2d.shape[1], self.gate_proj.out_features,
|
|
||||||
SILU, qtype
|
|
||||||
))
|
|
||||||
return self.down_proj(
|
|
||||||
self.activation_fn(self.gate_proj(hidden_states)) * self.up_proj(hidden_states)
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def phi3_model_forward_wrapper(origin_model_forward):
|
def phi3_model_forward_wrapper(origin_model_forward):
|
||||||
|
|
|
||||||
|
|
@ -51,16 +51,11 @@ from ipex_llm.transformers.models.utils import use_quantize_kv_cache, \
|
||||||
should_use_compresskv, is_enough_kv_cache_room_4_36
|
should_use_compresskv, is_enough_kv_cache_room_4_36
|
||||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache, \
|
||||||
DynamicCompressCache, DynamicCompressFp8Cache
|
DynamicCompressCache, DynamicCompressFp8Cache
|
||||||
from ipex_llm.utils.common import invalidInputError
|
|
||||||
|
|
||||||
from transformers.models.qwen2.modeling_qwen2 import Qwen2Attention, Qwen2MLP
|
from transformers.models.qwen2.modeling_qwen2 import Qwen2Model, Qwen2Attention, Qwen2MLP
|
||||||
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
|
from transformers.models.qwen2.modeling_qwen2 import apply_rotary_pos_emb
|
||||||
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
||||||
from transformers.cache_utils import Cache
|
from transformers.cache_utils import Cache
|
||||||
from transformers import logging
|
|
||||||
|
|
||||||
|
|
||||||
logger = logging.get_logger(__name__)
|
|
||||||
|
|
||||||
|
|
||||||
def qwen2_model_forward(
|
def qwen2_model_forward(
|
||||||
|
|
@ -74,50 +69,18 @@ def qwen2_model_forward(
|
||||||
output_attentions: Optional[bool] = None,
|
output_attentions: Optional[bool] = None,
|
||||||
output_hidden_states: Optional[bool] = None,
|
output_hidden_states: Optional[bool] = None,
|
||||||
return_dict: Optional[bool] = None,
|
return_dict: Optional[bool] = None,
|
||||||
cache_position: Optional[torch.LongTensor] = None, # for transformers >= 4.42
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
||||||
output_attentions = (
|
# IPEX-LLM OPT start: kv cache and quantize kv cache
|
||||||
output_attentions if output_attentions is not None
|
|
||||||
else self.config.output_attentions
|
|
||||||
)
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
# retrieve input_ids and inputs_embeds
|
|
||||||
if input_ids is not None and inputs_embeds is not None:
|
|
||||||
invalidInputError(False,
|
|
||||||
"You cannot specify both input_ids and inputs_embeds at the same time")
|
|
||||||
elif input_ids is not None:
|
|
||||||
batch_size, seq_length = input_ids.shape
|
|
||||||
elif inputs_embeds is not None:
|
|
||||||
batch_size, seq_length, _ = inputs_embeds.shape
|
|
||||||
else:
|
|
||||||
invalidInputError(False,
|
|
||||||
"You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
if use_cache:
|
|
||||||
logger.warning_once(
|
|
||||||
"`use_cache=True` is incompatible with gradient checkpointing. "
|
|
||||||
"Setting `use_cache=False`..."
|
|
||||||
)
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
past_key_values_length = 0
|
|
||||||
|
|
||||||
# ipex-llm changes start
|
|
||||||
# IPEX-LLM OPT: kv cache and quantize kv cache
|
|
||||||
inputs = input_ids if input_ids is not None else inputs_embeds
|
inputs = input_ids if input_ids is not None else inputs_embeds
|
||||||
num_heads, num_kv_heads = self.config.num_attention_heads, self.config.num_key_value_heads
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
||||||
use_quantize_kv = (
|
use_cache = True if inputs.device.type == "xpu" else use_cache
|
||||||
self.config.hidden_size != 3584 # disable quantize kv in specific model
|
|
||||||
and use_quantize_kv_cache(self.layers[0].mlp.up_proj, inputs, num_heads, num_kv_heads)
|
use_quantize_kv = self.config.hidden_size != 3584 and use_quantize_kv_cache(
|
||||||
|
self.layers[0].mlp.down_proj, inputs,
|
||||||
|
self.config.num_attention_heads, self.config.num_key_value_heads
|
||||||
)
|
)
|
||||||
|
|
||||||
use_compress_kv = should_use_compresskv(inputs, inputs.shape[1]) or \
|
use_compress_kv = should_use_compresskv(inputs, inputs.shape[1]) or \
|
||||||
isinstance(past_key_values, DynamicCompressCache)
|
isinstance(past_key_values, DynamicCompressCache)
|
||||||
|
|
||||||
|
|
@ -133,274 +96,26 @@ def qwen2_model_forward(
|
||||||
if not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
|
if not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
|
||||||
DynamicNormalCache):
|
DynamicNormalCache):
|
||||||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
||||||
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
||||||
# ipex-llm changes end
|
# ipex-llm changes end
|
||||||
|
|
||||||
if position_ids is None:
|
# `cache_position` is required after transformers 4.42
|
||||||
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
if cache_position is not None:
|
||||||
position_ids = torch.arange(
|
kwargs = {"cache_position": cache_position}
|
||||||
past_key_values_length, seq_length + past_key_values_length,
|
|
||||||
dtype=torch.long, device=device
|
|
||||||
)
|
|
||||||
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
||||||
else:
|
else:
|
||||||
position_ids = position_ids.view(-1, seq_length).long()
|
kwargs = {}
|
||||||
|
|
||||||
if inputs_embeds is None:
|
return Qwen2Model.forward(
|
||||||
inputs_embeds = self.embed_tokens(input_ids)
|
self=self,
|
||||||
|
input_ids=input_ids,
|
||||||
flash_attn_2 = self._attn_implementation == "flash_attention_2"
|
|
||||||
if attention_mask is not None and flash_attn_2 and use_cache:
|
|
||||||
|
|
||||||
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
|
||||||
if is_padding_right:
|
|
||||||
invalidInputError(
|
|
||||||
False,
|
|
||||||
"You are attempting to perform batched generation with padding_side='right'"
|
|
||||||
" this may lead to unexpected behaviour for Flash Attention version of Qwen2."
|
|
||||||
" Make sure to call `tokenizer.padding_side = 'left'` before tokenizing "
|
|
||||||
"the input. "
|
|
||||||
)
|
|
||||||
|
|
||||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask_for_sdpa
|
|
||||||
from transformers.models.qwen2.modeling_qwen2 import _prepare_4d_causal_attention_mask
|
|
||||||
|
|
||||||
# ipex-llm changes start: don't generate `attention_mask` in decode phase
|
|
||||||
if seq_length == 1:
|
|
||||||
attention_mask = None
|
|
||||||
# ipex-llm changes end
|
|
||||||
elif self._attn_implementation == "flash_attention_2":
|
|
||||||
# 2d mask is passed through the layers
|
|
||||||
attention_mask = attention_mask if (attention_mask is not None and
|
|
||||||
0 in attention_mask) else None
|
|
||||||
elif self._attn_implementation == "sdpa" and not output_attentions:
|
|
||||||
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
||||||
# the manual implementation that requires a 4D causal mask in all cases.
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
||||||
attention_mask,
|
|
||||||
(batch_size, seq_length),
|
|
||||||
inputs_embeds,
|
|
||||||
past_key_values_length,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# 4d mask is passed through the layers
|
|
||||||
attention_mask = _prepare_4d_causal_attention_mask(
|
|
||||||
attention_mask,
|
|
||||||
(batch_size, seq_length),
|
|
||||||
inputs_embeds,
|
|
||||||
past_key_values_length,
|
|
||||||
sliding_window=self.config.sliding_window,
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = inputs_embeds
|
|
||||||
|
|
||||||
# decoder layers
|
|
||||||
all_hidden_states = () if output_hidden_states else None
|
|
||||||
all_self_attns = () if output_attentions else None
|
|
||||||
next_decoder_cache = None
|
|
||||||
|
|
||||||
for decoder_layer in self.layers:
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
layer_outputs = self._gradient_checkpointing_func(
|
|
||||||
decoder_layer.__call__,
|
|
||||||
hidden_states,
|
|
||||||
attention_mask,
|
|
||||||
position_ids,
|
|
||||||
past_key_values,
|
|
||||||
output_attentions,
|
|
||||||
use_cache,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
# ipex-llm changes
|
|
||||||
curr_device = decoder_layer.input_layernorm.weight.device
|
|
||||||
if attention_mask is not None:
|
|
||||||
attention_mask = attention_mask.to(curr_device)
|
|
||||||
if position_ids is not None:
|
|
||||||
position_ids = position_ids.to(curr_device)
|
|
||||||
# ipex-llm changes end
|
|
||||||
layer_outputs = decoder_layer(
|
|
||||||
hidden_states,
|
|
||||||
attention_mask=attention_mask,
|
attention_mask=attention_mask,
|
||||||
position_ids=position_ids,
|
position_ids=position_ids,
|
||||||
past_key_value=past_key_values,
|
past_key_values=past_key_values,
|
||||||
output_attentions=output_attentions,
|
inputs_embeds=inputs_embeds,
|
||||||
use_cache=use_cache,
|
use_cache=use_cache,
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = layer_outputs[0]
|
|
||||||
|
|
||||||
if use_cache:
|
|
||||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
||||||
|
|
||||||
if output_attentions:
|
|
||||||
all_self_attns += (layer_outputs[1],)
|
|
||||||
|
|
||||||
hidden_states = self.norm(hidden_states)
|
|
||||||
|
|
||||||
# add hidden states from the last decoder layer
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
# ipex-llm changes start: remove `to_legacy_cache`
|
|
||||||
next_cache = None
|
|
||||||
if use_cache:
|
|
||||||
next_cache = next_decoder_cache
|
|
||||||
# ipex-llm changes end
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
return tuple(v for v in [hidden_states, next_cache,
|
|
||||||
all_hidden_states, all_self_attns] if v is not None)
|
|
||||||
return BaseModelOutputWithPast(
|
|
||||||
last_hidden_state=hidden_states,
|
|
||||||
past_key_values=next_cache,
|
|
||||||
hidden_states=all_hidden_states,
|
|
||||||
attentions=all_self_attns,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def qwen2_model_forward_4_42(
|
|
||||||
self,
|
|
||||||
input_ids: torch.LongTensor = None,
|
|
||||||
attention_mask: Optional[torch.Tensor] = None,
|
|
||||||
position_ids: Optional[torch.LongTensor] = None,
|
|
||||||
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
||||||
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
||||||
use_cache: Optional[bool] = None,
|
|
||||||
output_attentions: Optional[bool] = None,
|
|
||||||
output_hidden_states: Optional[bool] = None,
|
|
||||||
return_dict: Optional[bool] = None,
|
|
||||||
cache_position: Optional[torch.LongTensor] = None,
|
|
||||||
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
||||||
output_attentions = (
|
|
||||||
output_attentions if output_attentions is not None
|
|
||||||
else self.config.output_attentions
|
|
||||||
)
|
|
||||||
output_hidden_states = (
|
|
||||||
output_hidden_states if output_hidden_states is not None
|
|
||||||
else self.config.output_hidden_states
|
|
||||||
)
|
|
||||||
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
||||||
|
|
||||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
||||||
|
|
||||||
invalidInputError(
|
|
||||||
(input_ids is None) ^ (inputs_embeds is None),
|
|
||||||
"You cannot specify both input_ids and inputs_embeds at the same time, "
|
|
||||||
"and must specify either one"
|
|
||||||
)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
if use_cache:
|
|
||||||
logger.warning_once(
|
|
||||||
"`use_cache=True` is incompatible with gradient checkpointing. "
|
|
||||||
"Setting `use_cache=False`..."
|
|
||||||
)
|
|
||||||
use_cache = False
|
|
||||||
|
|
||||||
if inputs_embeds is None:
|
|
||||||
inputs_embeds = self.embed_tokens(input_ids)
|
|
||||||
|
|
||||||
# ipex-llm changes start
|
|
||||||
# IPEX-LLM OPT: kv cache and quantize kv cache
|
|
||||||
num_heads, num_kv_heads = self.config.num_attention_heads, self.config.num_key_value_heads
|
|
||||||
use_quantize_kv = (
|
|
||||||
self.config.hidden_size != 3584 # disable quantize kv in specific model
|
|
||||||
and use_quantize_kv_cache(self.layers[0].mlp.up_proj, inputs_embeds,
|
|
||||||
num_heads, num_kv_heads)
|
|
||||||
)
|
|
||||||
use_compress_kv = should_use_compresskv(inputs_embeds, inputs_embeds.shape[1]) or \
|
|
||||||
isinstance(past_key_values, DynamicCompressCache)
|
|
||||||
|
|
||||||
if use_cache:
|
|
||||||
if use_compress_kv and not isinstance(past_key_values, DynamicCompressCache):
|
|
||||||
if use_quantize_kv:
|
|
||||||
past_key_values = DynamicCompressFp8Cache.from_legacy_cache(past_key_values)
|
|
||||||
else:
|
|
||||||
past_key_values = DynamicCompressCache.from_legacy_cache(past_key_values)
|
|
||||||
elif use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
|
|
||||||
DynamicFp8Cache):
|
|
||||||
past_key_values = DynamicFp8Cache.from_legacy_cache(past_key_values)
|
|
||||||
if not use_quantize_kv and not use_compress_kv and not isinstance(past_key_values,
|
|
||||||
DynamicNormalCache):
|
|
||||||
past_key_values = DynamicNormalCache.from_legacy_cache(past_key_values)
|
|
||||||
# ipex-llm changes end
|
|
||||||
|
|
||||||
if cache_position is None:
|
|
||||||
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
|
||||||
cache_position = torch.arange(
|
|
||||||
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
|
|
||||||
)
|
|
||||||
if position_ids is None:
|
|
||||||
position_ids = cache_position.unsqueeze(0)
|
|
||||||
|
|
||||||
causal_mask = self._update_causal_mask(
|
|
||||||
attention_mask, inputs_embeds, cache_position, past_key_values, output_attentions
|
|
||||||
)
|
|
||||||
|
|
||||||
hidden_states = inputs_embeds
|
|
||||||
|
|
||||||
# decoder layers
|
|
||||||
all_hidden_states = () if output_hidden_states else None
|
|
||||||
all_self_attns = () if output_attentions else None
|
|
||||||
next_decoder_cache = None
|
|
||||||
|
|
||||||
for decoder_layer in self.layers:
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
if self.gradient_checkpointing and self.training:
|
|
||||||
layer_outputs = self._gradient_checkpointing_func(
|
|
||||||
decoder_layer.__call__,
|
|
||||||
hidden_states,
|
|
||||||
causal_mask,
|
|
||||||
position_ids,
|
|
||||||
past_key_values,
|
|
||||||
output_attentions,
|
|
||||||
use_cache,
|
|
||||||
cache_position,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
layer_outputs = decoder_layer(
|
|
||||||
hidden_states,
|
|
||||||
attention_mask=causal_mask,
|
|
||||||
position_ids=position_ids,
|
|
||||||
past_key_value=past_key_values,
|
|
||||||
output_attentions=output_attentions,
|
output_attentions=output_attentions,
|
||||||
use_cache=use_cache,
|
output_hidden_states=output_hidden_states,
|
||||||
cache_position=cache_position,
|
return_dict=return_dict,
|
||||||
)
|
**kwargs
|
||||||
|
|
||||||
hidden_states = layer_outputs[0]
|
|
||||||
|
|
||||||
if use_cache:
|
|
||||||
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
||||||
|
|
||||||
if output_attentions:
|
|
||||||
all_self_attns += (layer_outputs[1],)
|
|
||||||
|
|
||||||
hidden_states = self.norm(hidden_states)
|
|
||||||
|
|
||||||
# add hidden states from the last decoder layer
|
|
||||||
if output_hidden_states:
|
|
||||||
all_hidden_states += (hidden_states,)
|
|
||||||
|
|
||||||
# ipex-llm changes start: remove `to_legacy_cache`
|
|
||||||
next_cache = None
|
|
||||||
if use_cache:
|
|
||||||
next_cache = next_decoder_cache
|
|
||||||
# ipex-llm changes end
|
|
||||||
|
|
||||||
if not return_dict:
|
|
||||||
return tuple(v for v in [hidden_states, next_cache,
|
|
||||||
all_hidden_states, all_self_attns] if v is not None)
|
|
||||||
return BaseModelOutputWithPast(
|
|
||||||
last_hidden_state=hidden_states,
|
|
||||||
past_key_values=next_cache,
|
|
||||||
hidden_states=all_hidden_states,
|
|
||||||
attentions=all_self_attns,
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
||||||
|
|
@ -272,26 +272,6 @@ def use_xmx(x: torch.Tensor, qtype: int):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
def fp16_fusion_check(proj, x, training):
|
|
||||||
# only use fp16 fusion on PVC inference
|
|
||||||
if proj is None:
|
|
||||||
return False
|
|
||||||
if not hasattr(proj, "qtype"):
|
|
||||||
return False
|
|
||||||
if proj.qtype != ggml_tensor_qtype["fp16"]:
|
|
||||||
return False
|
|
||||||
if proj.weight_type != 2:
|
|
||||||
return False
|
|
||||||
if training:
|
|
||||||
return False
|
|
||||||
if x.requires_grad:
|
|
||||||
return False
|
|
||||||
device_type = get_xpu_device_name(x.device)
|
|
||||||
if device_type != "pvc":
|
|
||||||
return False
|
|
||||||
return True
|
|
||||||
|
|
||||||
|
|
||||||
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
||||||
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
||||||
if n_rep == 1:
|
if n_rep == 1:
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue