fix qwen2 vl (#12126)
This commit is contained in:
parent
2ea13d502f
commit
66f419f8b7
1 changed files with 11 additions and 15 deletions
|
|
@ -42,7 +42,7 @@ from typing import Optional, Tuple, Union, List
|
|||
|
||||
import torch
|
||||
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base
|
||||
from ipex_llm.transformers.models.common import merge_qkv_base, attention_softmax
|
||||
from ipex_llm.transformers.models.utils import use_quantize_kv_cache, restore_fp8_kv_cache
|
||||
from ipex_llm.transformers.models.utils import use_sdp, use_sdp_causal, should_use_fuse_rope
|
||||
from ipex_llm.transformers.kv import DynamicFp8Cache, DynamicNormalCache
|
||||
|
|
@ -207,29 +207,29 @@ def qwen2_vl_attention_forward(
|
|||
query_states, key_states, cos, sin, self.rope_scaling["mrope_section"]
|
||||
)
|
||||
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
if past_key_value is not None:
|
||||
key_states, value_states = past_key_value.update(key_states, value_states,
|
||||
self.layer_idx, None)
|
||||
kv_seq_len = key_states.shape[-2]
|
||||
|
||||
kv_seq_len = key_states.size(2)
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, :kv_seq_len]
|
||||
|
||||
attn_weights = None
|
||||
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states, causal_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||
attention_mask)
|
||||
attn_output = xe_addons.sdp(query_states, key_states, value_states, causal_mask)
|
||||
elif use_sdp_causal(q_len, kv_seq_len, self.head_dim, query_states, self.training):
|
||||
import xe_addons
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
attn_output = xe_addons.sdp_fp8_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
value_states, causal_mask)
|
||||
else:
|
||||
attn_output = xe_addons.sdp_causal(query_states, key_states,
|
||||
value_states, attention_mask)
|
||||
value_states, causal_mask)
|
||||
else:
|
||||
if isinstance(past_key_value, DynamicFp8Cache):
|
||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||
|
|
@ -241,15 +241,11 @@ def qwen2_vl_attention_forward(
|
|||
attn_weights = torch.matmul(query_states,
|
||||
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||
|
||||
if attention_mask is not None: # no matter the length, we just slice it
|
||||
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
|
||||
if causal_mask is not None:
|
||||
attn_weights = attn_weights + causal_mask
|
||||
|
||||
# upcast attention to fp32
|
||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1,
|
||||
dtype=torch.float32).to(query_states.dtype)
|
||||
attn_weights = torch.nn.functional.dropout(attn_weights, p=self.attention_dropout,
|
||||
training=self.training)
|
||||
attn_weights = attention_softmax(attn_weights, self.training)
|
||||
attn_output = torch.matmul(attn_weights, value_states)
|
||||
|
||||
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||
|
|
|
|||
Loading…
Reference in a new issue