Add MiniCPM-V cpu example (#11975)
* Add MiniCPM-V cpu example * fix * fix * fix * fix
This commit is contained in:
		
							parent
							
								
									79978e6f36
								
							
						
					
					
						commit
						65e281bb29
					
				
					 3 changed files with 202 additions and 1 deletions
				
			
		| 
						 | 
				
			
			@ -319,7 +319,7 @@ Over 50 models have been optimized/verified on `ipex-llm`, including *LLaMA/LLaM
 | 
			
		|||
| MiniCPM-V |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V) |
 | 
			
		||||
| MiniCPM-V-2 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2) |
 | 
			
		||||
| MiniCPM-Llama3-V-2_5 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-Llama3-V-2_5) |
 | 
			
		||||
| MiniCPM-V-2_6 |  | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
			
		||||
| MiniCPM-V-2_6 | [link](python/llm/example/CPU/HF-Transformers-AutoModels/Model/minicpm-v) | [link](python/llm/example/GPU/HuggingFace/Multimodal/MiniCPM-V-2_6) | 
 | 
			
		||||
 | 
			
		||||
## Get Support
 | 
			
		||||
- Please report a bug or raise a feature request by opening a [Github Issue](https://github.com/intel-analytics/ipex-llm/issues)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,101 @@
 | 
			
		|||
# MiniCPM-V
 | 
			
		||||
In this directory, you will find examples on how you could apply IPEX-LLM INT4 optimizations on MiniCPM-V models. For illustration purposes, we utilize the [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6) as a reference MiniCPM-V model.
 | 
			
		||||
 | 
			
		||||
## 0. Requirements
 | 
			
		||||
To run these examples with IPEX-LLM, we have some recommended requirements for your machine, please refer to [here](../README.md#recommended-requirements) for more information.
 | 
			
		||||
 | 
			
		||||
## Example: Predict Tokens using `chat()` API
 | 
			
		||||
In the example [chat.py](./chat.py), we show a basic use case for a MiniCPM-V model to predict the next N tokens using `chat()` API, with IPEX-LLM INT4 optimizations.
 | 
			
		||||
### 1. Install
 | 
			
		||||
We suggest using conda to manage environment:
 | 
			
		||||
 | 
			
		||||
On Linux:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
# install ipex-llm with 'all' option
 | 
			
		||||
pip install --pre --upgrade ipex-llm[all] --extra-index-url https://download.pytorch.org/whl/cpu
 | 
			
		||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
			
		||||
pip install transformers==4.40.0 trl
 | 
			
		||||
```
 | 
			
		||||
On Windows:
 | 
			
		||||
 | 
			
		||||
```cmd
 | 
			
		||||
conda create -n llm python=3.11
 | 
			
		||||
conda activate llm
 | 
			
		||||
 | 
			
		||||
pip install --pre --upgrade ipex-llm[all]
 | 
			
		||||
pip install torchvision==0.16.2 --index-url https://download.pytorch.org/whl/cpu
 | 
			
		||||
pip install transformers==4.40.0 trl
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Run
 | 
			
		||||
 | 
			
		||||
- chat without streaming mode:
 | 
			
		||||
  ```
 | 
			
		||||
  python ./chat.py --prompt 'What is in the image?'
 | 
			
		||||
  ```
 | 
			
		||||
- chat in streaming mode:
 | 
			
		||||
  ```
 | 
			
		||||
  python ./chat.py --prompt 'What is in the image?' --stream
 | 
			
		||||
  ```
 | 
			
		||||
 | 
			
		||||
> [!TIP]
 | 
			
		||||
> For chatting in streaming mode, it is recommended to set the environment variable `PYTHONUNBUFFERED=1`.
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Arguments info:
 | 
			
		||||
- `--repo-id-or-model-path REPO_ID_OR_MODEL_PATH`: argument defining the huggingface repo id for the MiniCPM-V model (e.g. `openbmb/MiniCPM-V-2_6`) to be downloaded, or the path to the huggingface checkpoint folder. It is default to be `'openbmb/MiniCPM-V-2_6'`.
 | 
			
		||||
- `--image-url-or-path IMAGE_URL_OR_PATH`: argument defining the image to be infered. It is default to be `'http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg'`.
 | 
			
		||||
- `--prompt PROMPT`: argument defining the prompt to be infered (with integrated prompt format for chat). It is default to be `'What is in the image?'`.
 | 
			
		||||
- `--stream`: flag to chat in streaming mode
 | 
			
		||||
 | 
			
		||||
> **Note**: When loading the model in 4-bit, IPEX-LLM converts linear layers in the model into INT4 format. In theory, a *X*B model saved in 16-bit will requires approximately 2*X* GB of memory for loading, and ~0.5*X* GB memory for further inference.
 | 
			
		||||
>
 | 
			
		||||
> Please select the appropriate size of the MiniCPM model based on the capabilities of your machine.
 | 
			
		||||
 | 
			
		||||
#### 2.1 Client
 | 
			
		||||
On client Windows machine, it is recommended to run directly with full utilization of all cores:
 | 
			
		||||
```cmd
 | 
			
		||||
python ./chat.py 
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.2 Server
 | 
			
		||||
For optimal performance on server, it is recommended to set several environment variables (refer to [here](../README.md#best-known-configuration-on-linux) for more information), and run the example with all the physical cores of a single socket.
 | 
			
		||||
 | 
			
		||||
E.g. on Linux,
 | 
			
		||||
```bash
 | 
			
		||||
# set IPEX-LLM env variables
 | 
			
		||||
source ipex-llm-init
 | 
			
		||||
 | 
			
		||||
# e.g. for a server with 48 cores per socket
 | 
			
		||||
export OMP_NUM_THREADS=48
 | 
			
		||||
numactl -C 0-47 -m 0 python ./chat.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
#### 2.3 Sample Output
 | 
			
		||||
#### [openbmb/MiniCPM-V-2_6](https://huggingface.co/openbmb/MiniCPM-V-2_6)
 | 
			
		||||
```log
 | 
			
		||||
Inference time: xxxx s
 | 
			
		||||
-------------------- Input Image --------------------
 | 
			
		||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
			
		||||
-------------------- Input Prompt --------------------
 | 
			
		||||
What is in the image?
 | 
			
		||||
-------------------- Chat Output --------------------
 | 
			
		||||
The image features a young child holding a white teddy bear dressed in pink. The background includes some red flowers and what appears to be a stone wall.
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
```log
 | 
			
		||||
-------------------- Input Image --------------------
 | 
			
		||||
http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg
 | 
			
		||||
-------------------- Input Prompt --------------------
 | 
			
		||||
图片里有什么?
 | 
			
		||||
-------------------- Stream Chat Output --------------------
 | 
			
		||||
图片中有一个小女孩,她手里拿着一个穿着粉色裙子的白色小熊玩偶。背景中有红色花朵和石头结构,可能是一个花园或庭院。
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The sample input image is (which is fetched from [COCO dataset](https://cocodataset.org/#explore?id=264959)):
 | 
			
		||||
 | 
			
		||||
<a href="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg"><img width=400px src="http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg" ></a>
 | 
			
		||||
| 
						 | 
				
			
			@ -0,0 +1,100 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
import argparse
 | 
			
		||||
import requests
 | 
			
		||||
import torch
 | 
			
		||||
from PIL import Image
 | 
			
		||||
from ipex_llm.transformers import AutoModel
 | 
			
		||||
from transformers import AutoTokenizer
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    parser = argparse.ArgumentParser(description='Predict Tokens using `chat()` API for MiniCPM-V model')
 | 
			
		||||
    parser.add_argument('--repo-id-or-model-path', type=str, default="openbmb/MiniCPM-V-2_6",
 | 
			
		||||
                        help='The huggingface repo id for the MiniCPM-V model to be downloaded'
 | 
			
		||||
                             ', or the path to the huggingface checkpoint folder')
 | 
			
		||||
    parser.add_argument('--image-url-or-path', type=str,
 | 
			
		||||
                        default='http://farm6.staticflickr.com/5268/5602445367_3504763978_z.jpg',
 | 
			
		||||
                        help='The URL or path to the image to infer')
 | 
			
		||||
    parser.add_argument('--prompt', type=str, default="What is in the image?",
 | 
			
		||||
                        help='Prompt to infer')
 | 
			
		||||
    parser.add_argument('--stream', action='store_true',
 | 
			
		||||
                        help='Whether to chat in streaming mode')
 | 
			
		||||
 | 
			
		||||
    args = parser.parse_args()
 | 
			
		||||
    model_path = args.repo_id_or_model_path
 | 
			
		||||
    image_path = args.image_url_or_path
 | 
			
		||||
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    model = AutoModel.from_pretrained(model_path,
 | 
			
		||||
                                      load_in_low_bit="sym_int4",
 | 
			
		||||
                                      optimize_model=True,
 | 
			
		||||
                                      trust_remote_code=True,
 | 
			
		||||
                                      use_cache=True,
 | 
			
		||||
                                      torch_dtype=torch.float32,
 | 
			
		||||
                                      modules_to_not_convert=["vpm", "resampler"])
 | 
			
		||||
 | 
			
		||||
    # Load tokenizer
 | 
			
		||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
			
		||||
                                              trust_remote_code=True)
 | 
			
		||||
    model.eval()
 | 
			
		||||
 | 
			
		||||
    query = args.prompt
 | 
			
		||||
    if os.path.exists(image_path):
 | 
			
		||||
       image = Image.open(image_path).convert('RGB')
 | 
			
		||||
    else:
 | 
			
		||||
       image = Image.open(requests.get(image_path, stream=True).raw).convert('RGB')
 | 
			
		||||
 | 
			
		||||
    # Generate predicted tokens
 | 
			
		||||
    # here the prompt tuning refers to https://huggingface.co/openbmb/MiniCPM-V-2_6/blob/main/README.md
 | 
			
		||||
    msgs = [{'role': 'user', 'content': [image, args.prompt]}]
 | 
			
		||||
 | 
			
		||||
    if args.stream:
 | 
			
		||||
        res = model.chat(
 | 
			
		||||
            image=None,
 | 
			
		||||
            msgs=msgs,
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
            stream=True
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        print('-'*20, 'Input Image', '-'*20)
 | 
			
		||||
        print(image_path)
 | 
			
		||||
        print('-'*20, 'Input Prompt', '-'*20)
 | 
			
		||||
        print(args.prompt)
 | 
			
		||||
        print('-'*20, 'Stream Chat Output', '-'*20)
 | 
			
		||||
        for new_text in res:
 | 
			
		||||
            print(new_text, flush=True, end='')
 | 
			
		||||
    else:
 | 
			
		||||
        st = time.time()
 | 
			
		||||
        res = model.chat(
 | 
			
		||||
            image=None,
 | 
			
		||||
            msgs=msgs,
 | 
			
		||||
            tokenizer=tokenizer,
 | 
			
		||||
        )
 | 
			
		||||
        end = time.time()
 | 
			
		||||
 | 
			
		||||
        print(f'Inference time: {end-st} s')
 | 
			
		||||
        print('-'*20, 'Input Image', '-'*20)
 | 
			
		||||
        print(image_path)
 | 
			
		||||
        print('-'*20, 'Input Prompt', '-'*20)
 | 
			
		||||
        print(args.prompt)
 | 
			
		||||
        print('-'*20, 'Chat Output', '-'*20)
 | 
			
		||||
        print(res)
 | 
			
		||||
		Loading…
	
		Reference in a new issue