[NPU] Modify IPEX_LLM_NPU_DISABLE_COMPILE_OPT setting for long input (#12537)
This commit is contained in:
parent
7cc01fdc86
commit
6596c18489
2 changed files with 13 additions and 4 deletions
|
|
@ -290,7 +290,8 @@ class _BaseAutoModelClass:
|
|||
model.config.update({"group_size": quantization_group_size})
|
||||
model.config.update({"asym": qtype == "asym_int4_rtn"})
|
||||
optimize_llm_pre(model, qtype, mixed_precision,
|
||||
quantization_group_size=quantization_group_size)
|
||||
quantization_group_size=quantization_group_size,
|
||||
max_prompt_len=max_prompt_len)
|
||||
cls.load_convert(qtype, model, "cpu", modules_to_not_convert,
|
||||
quantization_group_size, imatrix_data,
|
||||
*args, **kwargs)
|
||||
|
|
@ -580,7 +581,7 @@ class _BaseAutoModelClass:
|
|||
with torch.no_grad():
|
||||
optimize_llm_pre(model, qtype, mixed_precision,
|
||||
quantization_group_size=quantization_group_size,
|
||||
load=bigdl_lcmu_enabled)
|
||||
load=bigdl_lcmu_enabled, max_prompt_len=max_prompt_len)
|
||||
cls.load_convert(qtype, model, quant_device, modules_to_not_convert,
|
||||
quantization_group_size, *model_args, **kwargs)
|
||||
create_npu_kernels(llm)
|
||||
|
|
@ -804,7 +805,8 @@ class EmbeddingModel(_BaseAutoModelClass):
|
|||
|
||||
with torch.no_grad():
|
||||
optimize_llm_pre(model, qtype, mixed_precision,
|
||||
quantization_group_size=quantization_group_size)
|
||||
quantization_group_size=quantization_group_size,
|
||||
max_prompt_len=max_prompt_len)
|
||||
cls.load_convert_fp16(qtype, model.encoder, "cpu", modules_to_not_convert,
|
||||
quantization_group_size)
|
||||
create_npu_kernels(model.encoder)
|
||||
|
|
|
|||
|
|
@ -31,7 +31,7 @@ def convert_forward(m, target_m, new_forward):
|
|||
|
||||
|
||||
def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
|
||||
quantization_group_size=0, load=False):
|
||||
quantization_group_size=0, load=False, max_prompt_len=512):
|
||||
if model.config.model_type == "baichuan":
|
||||
# process NormHead module in Baichuan2 7B
|
||||
if hasattr(model, 'lm_head') and model.lm_head is not None:
|
||||
|
|
@ -48,6 +48,13 @@ def optimize_llm_pre(model: torch.nn.Module, qtype, mixed_precision,
|
|||
|
||||
cpu_lm_head = os.environ.get("IPEX_LLM_CPU_LM_HEAD", "0") != "0"
|
||||
|
||||
# workaround for long input performance of llama3.2-3b and glm-edge-4b CW
|
||||
if os.environ.get("IPEX_LLM_NPU_DISABLE_COMPILE_OPT") is None:
|
||||
disable_compile_opt = model.config.model_type == "llama" and \
|
||||
model.config.hidden_size == 3072 and max_prompt_len >= 1920 and \
|
||||
quantization_group_size == 0
|
||||
os.environ["IPEX_LLM_NPU_DISABLE_COMPILE_OPT"] = "1" if disable_compile_opt else "0"
|
||||
|
||||
# workaround for MiniCPM-2B
|
||||
if model.config.model_type == "minicpm" and model.config.num_hidden_layers == 40:
|
||||
# 73440 is vocab_size of MiniCPM-1B
|
||||
|
|
|
|||
Loading…
Reference in a new issue