Fix Qwen-VL example problem (#10582)
* update * update * update * update
This commit is contained in:
parent
b8b923ed04
commit
654dc5ba57
4 changed files with 113 additions and 44 deletions
|
|
@ -41,7 +41,9 @@ if __name__ == '__main__':
|
|||
load_in_4bit=True,
|
||||
device_map="cpu",
|
||||
trust_remote_code=True,
|
||||
modules_to_not_convert=['c_fc', 'out_proj'] )
|
||||
modules_to_not_convert=['c_fc', 'out_proj'],
|
||||
torch_dtype=torch.float32
|
||||
)
|
||||
|
||||
# Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
|
||||
model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||
|
|
|
|||
|
|
@ -32,7 +32,8 @@ import torch.utils.checkpoint
|
|||
from transformers.utils import logging
|
||||
from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
|
||||
from ipex_llm.transformers.models.utils import rotate_half
|
||||
|
||||
from ipex_llm.transformers.models.utils import use_esimd_sdp
|
||||
from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
|
||||
|
||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
|
||||
|
||||
|
|
@ -82,16 +83,50 @@ def qwen_attention_forward_vl(
|
|||
use_cache: Optional[bool] = False,
|
||||
):
|
||||
|
||||
mixed_x_layer = self.c_attn(hidden_states)
|
||||
|
||||
query, key, value = mixed_x_layer.split(self.split_size, dim=2)
|
||||
|
||||
query = self._split_heads(query, self.num_heads, self.head_dim)
|
||||
key = self._split_heads(key, self.num_heads, self.head_dim)
|
||||
value = self._split_heads(value, self.num_heads, self.head_dim)
|
||||
|
||||
kv_seq_len = hidden_states.size()[1]
|
||||
|
||||
bsz, q_len, _ = hidden_states.size()
|
||||
device = hidden_states.device
|
||||
|
||||
use_fuse_rope = should_use_fuse_rope(self, hidden_states)
|
||||
qtype_check = decoding_fast_path_qtype_check(self.q_proj)
|
||||
decoding_fast_path = (qtype_check and use_fuse_rope and bsz * q_len == 1)
|
||||
if decoding_fast_path:
|
||||
hidden_states = hidden_states.view(1, -1)
|
||||
cache_k, cache_v = layer_past[0], layer_past[1]
|
||||
cache_k = cache_k.transpose(1, 2)
|
||||
cache_v = cache_v.transpose(1, 2)
|
||||
|
||||
kv_seq_len = cache_k.shape[-2]
|
||||
self.position_ids = self.position_ids.to(device)
|
||||
position_ids = self.position_ids[kv_seq_len]
|
||||
base = self.rope_base
|
||||
if is_enough_kv_cache_room(layer_past, kv_seq_len):
|
||||
new_cache_k, new_cache_v = extend_kv_cache(bsz,
|
||||
self.num_heads,
|
||||
self.head_dim,
|
||||
cache_k.size(2),
|
||||
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||
dtype=cache_k.dtype,
|
||||
device=hidden_states.device)
|
||||
new_cache_k[:] = cache_k
|
||||
new_cache_v[:] = cache_v
|
||||
cache_k = new_cache_k
|
||||
cache_v = new_cache_v
|
||||
|
||||
args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
|
||||
self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
|
||||
self.v_proj.bias.data, position_ids, cache_k, cache_v, self.q_proj.weight.qtype,
|
||||
self.v_proj.weight.qtype, kv_seq_len, self.head_dim, base]
|
||||
import linear_q4_0
|
||||
query, key, value = linear_q4_0.forward_qkv_bias(*args)
|
||||
kv_seq_len += 1
|
||||
query_size, key_size = 1, 1
|
||||
else:
|
||||
query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
|
||||
|
||||
if rotary_pos_emb is not None:
|
||||
cur_len = query.shape[1]
|
||||
rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
|
||||
|
|
@ -100,10 +135,10 @@ def qwen_attention_forward_vl(
|
|||
# Slice the pos emb for current inference
|
||||
query = apply_rotary_pos_emb(query, q_pos_emb)
|
||||
key = apply_rotary_pos_emb(key, k_pos_emb)
|
||||
|
||||
bsz, _, n_heads, head_dim = key.size()
|
||||
query_size, key_size = query.size(1), key.size(1)
|
||||
|
||||
if layer_past is not None:
|
||||
if not decoding_fast_path:
|
||||
kv_seq_len += layer_past[0].shape[1]
|
||||
# past_key, past_value = layer_past[0], layer_past[1]
|
||||
# key = torch.cat((past_key, key), dim=1)
|
||||
|
|
@ -126,8 +161,8 @@ def qwen_attention_forward_vl(
|
|||
|
||||
key_states, value_states = append_kv_cache(cache_k, cache_v,
|
||||
key.transpose(1, 2), value.transpose(1, 2))
|
||||
key = key_states.transpose(1, 2)
|
||||
value = value_states.transpose(1, 2)
|
||||
key = key_states
|
||||
value = value_states
|
||||
elif use_cache:
|
||||
max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
|
||||
new_key_states, new_value_states = init_kv_cache(bsz,
|
||||
|
|
@ -139,28 +174,42 @@ def qwen_attention_forward_vl(
|
|||
device=hidden_states.device)
|
||||
new_key_states[:] = key.transpose(1, 2)
|
||||
new_value_states[:] = value.transpose(1, 2)
|
||||
key = new_key_states.transpose(1, 2)
|
||||
value = new_value_states.transpose(1, 2)
|
||||
key = new_key_states
|
||||
value = new_value_states
|
||||
|
||||
if use_cache:
|
||||
present = (key, value)
|
||||
present = (key.transpose(1, 2), value.transpose(1, 2))
|
||||
else:
|
||||
present = None
|
||||
|
||||
if decoding_fast_path:
|
||||
query = query.transpose(1, 2) # change to (bsz, q_len, num_heads, head_dim)
|
||||
|
||||
if self.use_logn_attn and not self.training:
|
||||
if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
|
||||
self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
|
||||
seq_start = key.size(1) - query.size(1)
|
||||
seq_end = key.size(1)
|
||||
seq_start = key_size - key_size
|
||||
seq_end = key_size
|
||||
logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
|
||||
query = query * logn_tensor.expand_as(query)
|
||||
|
||||
query = query.permute(0, 2, 1, 3)
|
||||
key = key.permute(0, 2, 1, 3)
|
||||
value = value.permute(0, 2, 1, 3)
|
||||
|
||||
if not self.training and not hidden_states.requires_grad and \
|
||||
use_esimd_sdp(q_len, key.shape[2], self.head_dim, query):
|
||||
import linear_fp16_esimd
|
||||
attn_output = linear_fp16_esimd.sdp_forward(query,
|
||||
key,
|
||||
value)
|
||||
attn_output = attn_output.view(query.shape)
|
||||
attn_output = attn_output.transpose(1, 2)
|
||||
attn_weight = None
|
||||
else:
|
||||
attn_output, attn_weight = self._attn(
|
||||
query, key, value, registered_causal_mask, attention_mask, head_mask
|
||||
)
|
||||
|
||||
|
||||
context_layer = self._merge_heads(
|
||||
attn_output, self.num_heads, self.head_dim
|
||||
)
|
||||
|
|
@ -174,6 +223,24 @@ def qwen_attention_forward_vl(
|
|||
return outputs
|
||||
|
||||
|
||||
def should_use_fuse_rope(self, query_states):
|
||||
use_fuse_rope = query_states.device.type == "xpu"
|
||||
use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
|
||||
return use_fuse_rope
|
||||
|
||||
|
||||
def is_enough_kv_cache_room(layer_past, kv_seq_len=1):
|
||||
# to determinate if is enough kv cache room in transformers between 4.31 and 4.35
|
||||
# seq_len for current seq len
|
||||
# For llama like kv cache, i.e., [bs, n_head, seq_len, head_dim]
|
||||
if layer_past is None:
|
||||
return False
|
||||
else:
|
||||
cache_k, cache_v = layer_past[0], layer_past[1]
|
||||
cache_k = cache_k.transpose(1, 2)
|
||||
return cache_k.stride(1) < (kv_seq_len + 1) * cache_k.size(3)
|
||||
|
||||
|
||||
def qwen_vl_resampler_forward(self, x, attn_mask=None):
|
||||
|
||||
pos_embed = get_abs_pos(self.pos_embed, x.size(1))
|
||||
|
|
|
|||
Loading…
Reference in a new issue