Fix Qwen-VL example problem (#10582)
* update * update * update * update
This commit is contained in:
		
							parent
							
								
									b8b923ed04
								
							
						
					
					
						commit
						654dc5ba57
					
				
					 4 changed files with 113 additions and 44 deletions
				
			
		| 
						 | 
					@ -41,7 +41,9 @@ if __name__ == '__main__':
 | 
				
			||||||
                                                 load_in_4bit=True, 
 | 
					                                                 load_in_4bit=True, 
 | 
				
			||||||
                                                 device_map="cpu", 
 | 
					                                                 device_map="cpu", 
 | 
				
			||||||
                                                 trust_remote_code=True, 
 | 
					                                                 trust_remote_code=True, 
 | 
				
			||||||
                                                 modules_to_not_convert=['c_fc', 'out_proj'] )
 | 
					                                                 modules_to_not_convert=['c_fc', 'out_proj'],
 | 
				
			||||||
 | 
					                                                 torch_dtype=torch.float32
 | 
				
			||||||
 | 
					                                                 )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
 | 
					    # Specify hyperparameters for generation (No need to do this if you are using transformers>=4.32.0)
 | 
				
			||||||
    model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
 | 
					    model.generation_config = GenerationConfig.from_pretrained(model_path, trust_remote_code=True)
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -35,7 +35,7 @@ if __name__ == '__main__':
 | 
				
			||||||
    model_path = args.repo_id_or_model_path
 | 
					    model_path = args.repo_id_or_model_path
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load model
 | 
					    # Load model
 | 
				
			||||||
    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu",  trust_remote_code=True)
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
					    # With only one line to enable BigDL-LLM optimization on model
 | 
				
			||||||
    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
					    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -37,7 +37,7 @@ if __name__ == '__main__':
 | 
				
			||||||
    model_path = args.repo_id_or_model_path  
 | 
					    model_path = args.repo_id_or_model_path  
 | 
				
			||||||
        
 | 
					        
 | 
				
			||||||
    # Load model
 | 
					    # Load model
 | 
				
			||||||
    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu",  trust_remote_code=True)
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path, device_map="cpu", trust_remote_code=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # With only one line to enable BigDL-LLM optimization on model
 | 
					    # With only one line to enable BigDL-LLM optimization on model
 | 
				
			||||||
    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
					    # For successful BigDL-LLM optimization on Qwen-VL-Chat, skip the 'c_fc' and 'out_proj' modules during optimization
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -32,7 +32,8 @@ import torch.utils.checkpoint
 | 
				
			||||||
from transformers.utils import logging
 | 
					from transformers.utils import logging
 | 
				
			||||||
from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
					from ipex_llm.transformers.models.utils import extend_kv_cache, init_kv_cache, append_kv_cache
 | 
				
			||||||
from ipex_llm.transformers.models.utils import rotate_half
 | 
					from ipex_llm.transformers.models.utils import rotate_half
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.utils import use_esimd_sdp
 | 
				
			||||||
 | 
					from ipex_llm.transformers.models.utils import decoding_fast_path_qtype_check
 | 
				
			||||||
 | 
					
 | 
				
			||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
					KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -82,36 +83,25 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
    use_cache: Optional[bool] = False,
 | 
					    use_cache: Optional[bool] = False,
 | 
				
			||||||
):
 | 
					):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    mixed_x_layer = self.c_attn(hidden_states)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    query, key, value = mixed_x_layer.split(self.split_size, dim=2)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    query = self._split_heads(query, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
    key = self._split_heads(key, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
    value = self._split_heads(value, self.num_heads, self.head_dim)
 | 
					 | 
				
			||||||
 | 
					 | 
				
			||||||
    kv_seq_len = hidden_states.size()[1]
 | 
					    kv_seq_len = hidden_states.size()[1]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if rotary_pos_emb is not None:
 | 
					    bsz, q_len, _ = hidden_states.size()
 | 
				
			||||||
        cur_len = query.shape[1]
 | 
					    device = hidden_states.device
 | 
				
			||||||
        rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
					 | 
				
			||||||
        rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
					 | 
				
			||||||
        q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
					 | 
				
			||||||
        # Slice the pos emb for current inference
 | 
					 | 
				
			||||||
        query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
					 | 
				
			||||||
        key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    bsz, _, n_heads, head_dim = key.size()
 | 
					    use_fuse_rope = should_use_fuse_rope(self, hidden_states)
 | 
				
			||||||
 | 
					    qtype_check = decoding_fast_path_qtype_check(self.q_proj)
 | 
				
			||||||
 | 
					    decoding_fast_path = (qtype_check and use_fuse_rope and bsz * q_len == 1)
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        hidden_states = hidden_states.view(1, -1)
 | 
				
			||||||
 | 
					        cache_k, cache_v = layer_past[0], layer_past[1]
 | 
				
			||||||
 | 
					        cache_k = cache_k.transpose(1, 2)
 | 
				
			||||||
 | 
					        cache_v = cache_v.transpose(1, 2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if layer_past is not None:
 | 
					        kv_seq_len = cache_k.shape[-2]
 | 
				
			||||||
        kv_seq_len += layer_past[0].shape[1]
 | 
					        self.position_ids = self.position_ids.to(device)
 | 
				
			||||||
        # past_key, past_value = layer_past[0], layer_past[1]
 | 
					        position_ids = self.position_ids[kv_seq_len]
 | 
				
			||||||
        # key = torch.cat((past_key, key), dim=1)
 | 
					        base = self.rope_base
 | 
				
			||||||
        # value = torch.cat((past_value, value), dim=1)
 | 
					        if is_enough_kv_cache_room(layer_past, kv_seq_len):
 | 
				
			||||||
        cache_k = layer_past[0].transpose(1, 2)
 | 
					 | 
				
			||||||
        cache_v = layer_past[1].transpose(1, 2)
 | 
					 | 
				
			||||||
        if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
 | 
					 | 
				
			||||||
            # allocate new
 | 
					 | 
				
			||||||
            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
					            new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
				
			||||||
                                                       self.num_heads,
 | 
					                                                       self.num_heads,
 | 
				
			||||||
                                                       self.head_dim,
 | 
					                                                       self.head_dim,
 | 
				
			||||||
| 
						 | 
					@ -124,10 +114,55 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
            cache_k = new_cache_k
 | 
					            cache_k = new_cache_k
 | 
				
			||||||
            cache_v = new_cache_v
 | 
					            cache_v = new_cache_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
					        args = [hidden_states, self.q_proj.weight.data, self.k_proj.weight.data,
 | 
				
			||||||
                                                   key.transpose(1, 2), value.transpose(1, 2))
 | 
					                self.v_proj.weight.data, self.q_proj.bias.data, self.k_proj.bias.data,
 | 
				
			||||||
        key = key_states.transpose(1, 2)
 | 
					                self.v_proj.bias.data, position_ids, cache_k, cache_v, self.q_proj.weight.qtype,
 | 
				
			||||||
        value = value_states.transpose(1, 2)
 | 
					                self.v_proj.weight.qtype, kv_seq_len, self.head_dim, base]
 | 
				
			||||||
 | 
					        import linear_q4_0
 | 
				
			||||||
 | 
					        query, key, value = linear_q4_0.forward_qkv_bias(*args)
 | 
				
			||||||
 | 
					        kv_seq_len += 1
 | 
				
			||||||
 | 
					        query_size, key_size = 1, 1
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        query = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
				
			||||||
 | 
					        key = self.k_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
				
			||||||
 | 
					        value = self.v_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if rotary_pos_emb is not None:
 | 
				
			||||||
 | 
					            cur_len = query.shape[1]
 | 
				
			||||||
 | 
					            rotary_pos_emb = [i[:, -cur_len:, :, :] for i in rotary_pos_emb]
 | 
				
			||||||
 | 
					            rotary_pos_emb = (rotary_pos_emb,) * 2
 | 
				
			||||||
 | 
					            q_pos_emb, k_pos_emb = rotary_pos_emb
 | 
				
			||||||
 | 
					            # Slice the pos emb for current inference
 | 
				
			||||||
 | 
					            query = apply_rotary_pos_emb(query, q_pos_emb)
 | 
				
			||||||
 | 
					            key = apply_rotary_pos_emb(key, k_pos_emb)
 | 
				
			||||||
 | 
					        query_size, key_size = query.size(1), key.size(1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if layer_past is not None:
 | 
				
			||||||
 | 
					        if not decoding_fast_path:
 | 
				
			||||||
 | 
					            kv_seq_len += layer_past[0].shape[1]
 | 
				
			||||||
 | 
					            # past_key, past_value = layer_past[0], layer_past[1]
 | 
				
			||||||
 | 
					            # key = torch.cat((past_key, key), dim=1)
 | 
				
			||||||
 | 
					            # value = torch.cat((past_value, value), dim=1)
 | 
				
			||||||
 | 
					            cache_k = layer_past[0].transpose(1, 2)
 | 
				
			||||||
 | 
					            cache_v = layer_past[1].transpose(1, 2)
 | 
				
			||||||
 | 
					            if cache_k.stride()[1] < kv_seq_len * cache_k.size(3):
 | 
				
			||||||
 | 
					                # allocate new
 | 
				
			||||||
 | 
					                new_cache_k, new_cache_v = extend_kv_cache(bsz,
 | 
				
			||||||
 | 
					                                                           self.num_heads,
 | 
				
			||||||
 | 
					                                                           self.head_dim,
 | 
				
			||||||
 | 
					                                                           cache_k.size(2),
 | 
				
			||||||
 | 
					                                                           kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                                                           dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                                                           device=hidden_states.device)
 | 
				
			||||||
 | 
					                new_cache_k[:] = cache_k
 | 
				
			||||||
 | 
					                new_cache_v[:] = cache_v
 | 
				
			||||||
 | 
					                cache_k = new_cache_k
 | 
				
			||||||
 | 
					                cache_v = new_cache_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            key_states, value_states = append_kv_cache(cache_k, cache_v,
 | 
				
			||||||
 | 
					                                                       key.transpose(1, 2), value.transpose(1, 2))
 | 
				
			||||||
 | 
					            key = key_states
 | 
				
			||||||
 | 
					            value = value_states
 | 
				
			||||||
    elif use_cache:
 | 
					    elif use_cache:
 | 
				
			||||||
        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
					        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
				
			||||||
        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
					        new_key_states, new_value_states = init_kv_cache(bsz,
 | 
				
			||||||
| 
						 | 
					@ -139,28 +174,42 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
                                                         device=hidden_states.device)
 | 
					                                                         device=hidden_states.device)
 | 
				
			||||||
        new_key_states[:] = key.transpose(1, 2)
 | 
					        new_key_states[:] = key.transpose(1, 2)
 | 
				
			||||||
        new_value_states[:] = value.transpose(1, 2)
 | 
					        new_value_states[:] = value.transpose(1, 2)
 | 
				
			||||||
        key = new_key_states.transpose(1, 2)
 | 
					        key = new_key_states
 | 
				
			||||||
        value = new_value_states.transpose(1, 2)
 | 
					        value = new_value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if use_cache:
 | 
					    if use_cache:
 | 
				
			||||||
        present = (key, value)
 | 
					        present = (key.transpose(1, 2), value.transpose(1, 2))
 | 
				
			||||||
    else:
 | 
					    else:
 | 
				
			||||||
        present = None
 | 
					        present = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if decoding_fast_path:
 | 
				
			||||||
 | 
					        query = query.transpose(1, 2) # change to (bsz, q_len, num_heads, head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    if self.use_logn_attn and not self.training:
 | 
					    if self.use_logn_attn and not self.training:
 | 
				
			||||||
        if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
 | 
					        if self.logn_tensor.device != query.device or self.logn_tensor.dtype != query.dtype:
 | 
				
			||||||
            self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
 | 
					            self.logn_tensor = self.logn_tensor.to(query.device).type_as(query)
 | 
				
			||||||
        seq_start = key.size(1) - query.size(1)
 | 
					        seq_start = key_size - key_size
 | 
				
			||||||
        seq_end = key.size(1)
 | 
					        seq_end = key_size
 | 
				
			||||||
        logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
 | 
					        logn_tensor = self.logn_tensor[:, seq_start:seq_end, :, :]
 | 
				
			||||||
        query = query * logn_tensor.expand_as(query)
 | 
					        query = query * logn_tensor.expand_as(query)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    query = query.permute(0, 2, 1, 3)
 | 
					    query = query.permute(0, 2, 1, 3)
 | 
				
			||||||
    key = key.permute(0, 2, 1, 3)
 | 
					
 | 
				
			||||||
    value = value.permute(0, 2, 1, 3)
 | 
					    if not self.training and not hidden_states.requires_grad and \
 | 
				
			||||||
    attn_output, attn_weight = self._attn(
 | 
					    use_esimd_sdp(q_len, key.shape[2], self.head_dim, query):
 | 
				
			||||||
        query, key, value, registered_causal_mask, attention_mask, head_mask
 | 
					        import linear_fp16_esimd
 | 
				
			||||||
    )
 | 
					        attn_output = linear_fp16_esimd.sdp_forward(query,
 | 
				
			||||||
 | 
					                                                    key,
 | 
				
			||||||
 | 
					                                                    value)
 | 
				
			||||||
 | 
					        attn_output = attn_output.view(query.shape)
 | 
				
			||||||
 | 
					        attn_output = attn_output.transpose(1, 2)
 | 
				
			||||||
 | 
					        attn_weight = None
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        attn_output, attn_weight = self._attn(
 | 
				
			||||||
 | 
					            query, key, value, registered_causal_mask, attention_mask, head_mask
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    context_layer = self._merge_heads(
 | 
					    context_layer = self._merge_heads(
 | 
				
			||||||
        attn_output, self.num_heads, self.head_dim
 | 
					        attn_output, self.num_heads, self.head_dim
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
| 
						 | 
					@ -174,6 +223,24 @@ def qwen_attention_forward_vl(
 | 
				
			||||||
    return outputs
 | 
					    return outputs
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def should_use_fuse_rope(self, query_states):
 | 
				
			||||||
 | 
					    use_fuse_rope = query_states.device.type == "xpu"
 | 
				
			||||||
 | 
					    use_fuse_rope = use_fuse_rope and not (self.training and query_states.requires_grad)
 | 
				
			||||||
 | 
					    return use_fuse_rope
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def is_enough_kv_cache_room(layer_past, kv_seq_len=1):
 | 
				
			||||||
 | 
					    # to determinate if is enough kv cache room in transformers between 4.31 and 4.35
 | 
				
			||||||
 | 
					    # seq_len for current seq len
 | 
				
			||||||
 | 
					    # For llama like kv cache, i.e., [bs, n_head, seq_len, head_dim]
 | 
				
			||||||
 | 
					    if layer_past is None:
 | 
				
			||||||
 | 
					        return False
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        cache_k, cache_v = layer_past[0], layer_past[1]
 | 
				
			||||||
 | 
					        cache_k = cache_k.transpose(1, 2)
 | 
				
			||||||
 | 
					        return cache_k.stride(1) < (kv_seq_len + 1) * cache_k.size(3)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def qwen_vl_resampler_forward(self, x, attn_mask=None):
 | 
					def qwen_vl_resampler_forward(self, x, attn_mask=None):
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    pos_embed = get_abs_pos(self.pos_embed, x.size(1))
 | 
					    pos_embed = get_abs_pos(self.pos_embed, x.size(1))
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue