fix UT threshold (#10689)
This commit is contained in:
parent
c0cd238e40
commit
65127622aa
3 changed files with 29 additions and 29 deletions
|
|
@ -138,7 +138,7 @@ class Test_Optimize_Gpu_Model:
|
||||||
def Mistral_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Mistral_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
layer_before_RMSNorm = "model.layers.30"
|
layer_before_RMSNorm = "model.layers.30"
|
||||||
RMSNorm_layer = "model.layers.31.input_layernorm"
|
RMSNorm_layer = "model.layers.31.input_layernorm"
|
||||||
lower_bound = 8e-6
|
lower_bound = 2e-5
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, RMSNorm_layer, layer_before_RMSNorm, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, RMSNorm_layer, layer_before_RMSNorm, lower_bound)
|
||||||
|
|
||||||
def Baichuan_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Baichuan_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
|
|
|
||||||
|
|
@ -121,9 +121,9 @@ class Test_Optimize_Gpu_Model:
|
||||||
del model
|
del model
|
||||||
del opt_model
|
del opt_model
|
||||||
gc.collect()
|
gc.collect()
|
||||||
|
|
||||||
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
||||||
|
|
||||||
@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
|
@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
|
||||||
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
|
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
|
||||||
if Name == "MPT-7B":
|
if Name == "MPT-7B":
|
||||||
|
|
@ -141,7 +141,7 @@ class Test_Optimize_Gpu_Model:
|
||||||
elif Name == "Qwen-7B-Chat":
|
elif Name == "Qwen-7B-Chat":
|
||||||
self.Qwen_gpu_model(Name, Model, Tokenizer, model_path)
|
self.Qwen_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
|
|
||||||
|
|
||||||
def MPT_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def MPT_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only need to compare the output of one self-attention layer.
|
# currently only need to compare the output of one self-attention layer.
|
||||||
layer_norm = "transformer.blocks.31.norm_1"
|
layer_norm = "transformer.blocks.31.norm_1"
|
||||||
|
|
@ -155,14 +155,14 @@ class Test_Optimize_Gpu_Model:
|
||||||
self_attn = "model.layers.31.self_attn"
|
self_attn = "model.layers.31.self_attn"
|
||||||
lower_bound = 8e-3
|
lower_bound = 8e-3
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Falcon_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only compare the output of the last self-attention layer.
|
# currently only compare the output of the last self-attention layer.
|
||||||
layer_norm = "transformer.h.31.input_layernorm"
|
layer_norm = "transformer.h.31.input_layernorm"
|
||||||
self_attn = "transformer.h.31.self_attention"
|
self_attn = "transformer.h.31.self_attention"
|
||||||
lower_bound = 0
|
lower_bound = 0
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
def Chatglm2_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Chatglm2_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only need to compare the output of one self-attention layer.
|
# currently only need to compare the output of one self-attention layer.
|
||||||
layer_norm = "transformer.encoder.layers.27.input_layernorm"
|
layer_norm = "transformer.encoder.layers.27.input_layernorm"
|
||||||
|
|
@ -176,12 +176,12 @@ class Test_Optimize_Gpu_Model:
|
||||||
self_attn = "model.layers.31.self_attn"
|
self_attn = "model.layers.31.self_attn"
|
||||||
lower_bound = 9e-3
|
lower_bound = 9e-3
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
def Baichuan_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Baichuan_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only need to compare the output of one self-attention layer.
|
# currently only need to compare the output of one self-attention layer.
|
||||||
layer_norm = "model.layers.31.input_layernorm"
|
layer_norm = "model.layers.31.input_layernorm"
|
||||||
self_attn = "model.layers.31.self_attn"
|
self_attn = "model.layers.31.self_attn"
|
||||||
lower_bound = 2e-3
|
lower_bound = 8e-3
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, self_attn, layer_norm, lower_bound)
|
||||||
|
|
||||||
def Qwen_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Qwen_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
|
|
|
||||||
|
|
@ -13,41 +13,41 @@
|
||||||
# See the License for the specific language governing permissions and
|
# See the License for the specific language governing permissions and
|
||||||
# limitations under the License.
|
# limitations under the License.
|
||||||
#
|
#
|
||||||
|
|
||||||
import os
|
import os
|
||||||
import gc
|
import gc
|
||||||
import pytest
|
import pytest
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
|
from ipex_llm.transformers import AutoModelForCausalLM, AutoModel
|
||||||
from transformers import LlamaTokenizer, AutoTokenizer
|
from transformers import LlamaTokenizer, AutoTokenizer
|
||||||
|
|
||||||
device = os.environ['DEVICE']
|
device = os.environ['DEVICE']
|
||||||
print(f'Running on {device}')
|
print(f'Running on {device}')
|
||||||
|
|
||||||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
|
||||||
TEST_MODEL_LIST = [
|
TEST_MODEL_LIST = [
|
||||||
("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
|
("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
|
||||||
("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
|
("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH')),
|
||||||
("Llama2-7B", AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
("Llama2-7B", AutoModelForCausalLM, LlamaTokenizer, os.environ.get('LLAMA2_7B_ORIGIN_PATH'))
|
||||||
]
|
]
|
||||||
|
|
||||||
class Test_Optimize_Gpu_Model:
|
class Test_Optimize_Gpu_Model:
|
||||||
def setup_method(self):
|
def setup_method(self):
|
||||||
self.layer_outputs = []
|
self.layer_outputs = []
|
||||||
self.pre_layer_outputs = []
|
self.pre_layer_outputs = []
|
||||||
|
|
||||||
def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound):
|
def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound):
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
def pre_forward_hook(module, input, output, layer_name):
|
def pre_forward_hook(module, input, output, layer_name):
|
||||||
self.pre_layer_outputs.append(output)
|
self.pre_layer_outputs.append(output)
|
||||||
|
|
||||||
def forward_hook(module, input, output, layer_name):
|
def forward_hook(module, input, output, layer_name):
|
||||||
self.layer_outputs.append(output)
|
self.layer_outputs.append(output)
|
||||||
|
|
||||||
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
|
||||||
input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
|
input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
|
||||||
|
|
||||||
model = Model.from_pretrained(model_path,
|
model = Model.from_pretrained(model_path,
|
||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
optimize_model=False,
|
optimize_model=False,
|
||||||
|
|
@ -66,18 +66,18 @@ class Test_Optimize_Gpu_Model:
|
||||||
# the list `layer_output` has only one element.
|
# the list `layer_output` has only one element.
|
||||||
layer_tensor = self.layer_outputs.pop()
|
layer_tensor = self.layer_outputs.pop()
|
||||||
model.to('cpu')
|
model.to('cpu')
|
||||||
|
|
||||||
opt_model = Model.from_pretrained(model_path,
|
opt_model = Model.from_pretrained(model_path,
|
||||||
load_in_4bit=True,
|
load_in_4bit=True,
|
||||||
optimize_model=True,
|
optimize_model=True,
|
||||||
trust_remote_code=True)
|
trust_remote_code=True)
|
||||||
opt_model = opt_model.to(device)
|
opt_model = opt_model.to(device)
|
||||||
|
|
||||||
|
|
||||||
def replace_forward_hook(module, input, output, layer_name):
|
def replace_forward_hook(module, input, output, layer_name):
|
||||||
output = self.pre_layer_outputs[0]
|
output = self.pre_layer_outputs[0]
|
||||||
return output
|
return output
|
||||||
|
|
||||||
for layer_name, layer_module in opt_model.named_modules():
|
for layer_name, layer_module in opt_model.named_modules():
|
||||||
if layer_name == layer_before_MLP:
|
if layer_name == layer_before_MLP:
|
||||||
layer_module.register_forward_hook(
|
layer_module.register_forward_hook(
|
||||||
|
|
@ -91,7 +91,7 @@ class Test_Optimize_Gpu_Model:
|
||||||
# the list `layer_output` has only one element.
|
# the list `layer_output` has only one element.
|
||||||
opt_layer_tensor = self.layer_outputs[0]
|
opt_layer_tensor = self.layer_outputs[0]
|
||||||
opt_model.to('cpu')
|
opt_model.to('cpu')
|
||||||
|
|
||||||
MLP_output_diff = []
|
MLP_output_diff = []
|
||||||
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
|
||||||
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
|
||||||
|
|
@ -99,7 +99,7 @@ class Test_Optimize_Gpu_Model:
|
||||||
else:
|
else:
|
||||||
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
for i, (t3, t4) in enumerate(zip(t1, t2)):
|
||||||
MLP_output_diff.append(t3 - t4)
|
MLP_output_diff.append(t3 - t4)
|
||||||
|
|
||||||
max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff]
|
max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff]
|
||||||
print(max_diff_tensor)
|
print(max_diff_tensor)
|
||||||
torch.xpu.empty_cache()
|
torch.xpu.empty_cache()
|
||||||
|
|
@ -107,7 +107,7 @@ class Test_Optimize_Gpu_Model:
|
||||||
del opt_model
|
del opt_model
|
||||||
gc.collect()
|
gc.collect()
|
||||||
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
|
||||||
|
|
||||||
@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
|
@pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
|
||||||
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
|
def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
|
||||||
if Name == "Qwen-7B-Chat":
|
if Name == "Qwen-7B-Chat":
|
||||||
|
|
@ -117,25 +117,25 @@ class Test_Optimize_Gpu_Model:
|
||||||
elif Name == "Llama2-7B":
|
elif Name == "Llama2-7B":
|
||||||
self.Llama2_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
self.Llama2_7B_gpu_model(Name, Model, Tokenizer, model_path)
|
||||||
|
|
||||||
|
|
||||||
def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only compare the output of the last mlp layer.
|
# currently only compare the output of the last mlp layer.
|
||||||
layer_before_MLP = "transformer.h.31.ln_2"
|
layer_before_MLP = "transformer.h.31.ln_2"
|
||||||
MLP_layer = "transformer.h.31.mlp"
|
MLP_layer = "transformer.h.31.mlp"
|
||||||
lower_bound = 0
|
lower_bound = 0
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
||||||
|
|
||||||
def Mistral_7B_Instruct_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Mistral_7B_Instruct_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# currently only compare the output of the last mlp layer.
|
# currently only compare the output of the last mlp layer.
|
||||||
layer_before_MLP = "model.layers.31.post_attention_layernorm"
|
layer_before_MLP = "model.layers.31.post_attention_layernorm"
|
||||||
MLP_layer = "model.layers.31.mlp"
|
MLP_layer = "model.layers.31.mlp"
|
||||||
lower_bound = 0
|
lower_bound = 0
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
|
||||||
|
|
||||||
def Llama2_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
def Llama2_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
|
||||||
# The tests are actually testing the mlp layer. We can't test the mlp layer directly
|
# The tests are actually testing the decode layer. We can't test the mlp layer directly
|
||||||
# since the original Llama2 code adds residual after the mlp layer, which differs from the implementation of bigdl
|
# since the original Llama2 code adds residual after the mlp layer, which differs from the implementation of bigdl
|
||||||
layer_before_Decoder = "model.layers.30"
|
layer_before_Decoder = "model.layers.30"
|
||||||
Decoder_layer = "model.layers.31"
|
Decoder_layer = "model.layers.31"
|
||||||
lower_bound = 5e-2
|
lower_bound = 1e-1
|
||||||
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, Decoder_layer, layer_before_Decoder, lower_bound)
|
self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, Decoder_layer, layer_before_Decoder, lower_bound)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue