update run_transformer_int4_gpu (#8983)
* xpuperf * update run.py * clean upo * uodate * update * meet code review
This commit is contained in:
		
							parent
							
								
									aeef73a182
								
							
						
					
					
						commit
						64ee1d7689
					
				
					 1 changed files with 20 additions and 21 deletions
				
			
		| 
						 | 
				
			
			@ -58,7 +58,10 @@ def run_model(repo_id, test_api, in_out_pairs, local_model_hub=None, warm_up=1,
 | 
			
		|||
def get_model_path(repo_id, local_model_hub):
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split("/")[1]
 | 
			
		||||
        return local_model_hub + os.path.sep + repo_model_name
 | 
			
		||||
        local_model_path = local_model_hub + os.path.sep + repo_model_name
 | 
			
		||||
        invalidInputError(os.path.isdir(local_model_path),
 | 
			
		||||
                          local_model_path + " not exists!, Please check your models' folder.")
 | 
			
		||||
        return local_model_path
 | 
			
		||||
    else:
 | 
			
		||||
        return repo_id
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -275,25 +278,20 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
    from bigdl.llm.transformers import AutoModel, AutoModelForCausalLM
 | 
			
		||||
    from transformers import AutoTokenizer
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split("/")[1]
 | 
			
		||||
        model_path = local_model_hub + "/" + repo_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        model_path = repo_id
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, load_in_4bit=True, optimize_model=True, trust_remote_code=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, optimize_model=True, load_in_4bit=True, trust_remote_code=True)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
| 
						 | 
				
			
			@ -305,8 +303,10 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
| 
						 | 
				
			
			@ -319,6 +319,7 @@ def run_transformer_int4_gpu(repo_id,
 | 
			
		|||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    torch.xpu.empty_cache()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -330,27 +331,22 @@ def run_optimize_model_gpu(repo_id,
 | 
			
		|||
    from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer
 | 
			
		||||
    from bigdl.llm import optimize_model
 | 
			
		||||
    import intel_extension_for_pytorch as ipex
 | 
			
		||||
    if local_model_hub:
 | 
			
		||||
        repo_model_name = repo_id.split("/")[1]
 | 
			
		||||
        model_path = local_model_hub + "/" + repo_model_name
 | 
			
		||||
    else:
 | 
			
		||||
        model_path = repo_id
 | 
			
		||||
    model_path = get_model_path(repo_id, local_model_hub)
 | 
			
		||||
    # Load model in 4 bit,
 | 
			
		||||
    # which convert the relevant layers in the model into INT4 format
 | 
			
		||||
    st = time.perf_counter()
 | 
			
		||||
    if repo_id in ['THUDM/chatglm-6b', 'THUDM/chatglm2-6b']:
 | 
			
		||||
        model = AutoModel.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    else:
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True)
 | 
			
		||||
        model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype='auto', low_cpu_mem_usage=True, trust_remote_code=True)
 | 
			
		||||
        model = optimize_model(model)
 | 
			
		||||
        model = model.to('xpu')
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path)
 | 
			
		||||
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
    end = time.perf_counter()
 | 
			
		||||
    print(">> loading of model costs {}s".format(end - st))
 | 
			
		||||
 | 
			
		||||
    model = model.to('xpu')
 | 
			
		||||
    model = BenchmarkWrapper(model)
 | 
			
		||||
 | 
			
		||||
    result = {}
 | 
			
		||||
| 
						 | 
				
			
			@ -362,8 +358,10 @@ def run_optimize_model_gpu(repo_id,
 | 
			
		|||
            input_str = open(f"prompt/{in_len}.txt", 'r').read()
 | 
			
		||||
            # As different tokenizer has different encodings,
 | 
			
		||||
            # slice the input_ids to ensure the prompt length is required length.
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            input_ids = tokenizer.encode(input_str, return_tensors="pt")
 | 
			
		||||
            input_ids = input_ids[:, :in_len]
 | 
			
		||||
            true_str = tokenizer.batch_decode(input_ids)[0]
 | 
			
		||||
            input_ids = tokenizer.encode(true_str, return_tensors="pt").to('xpu')
 | 
			
		||||
            result[in_out] = []
 | 
			
		||||
            for i in range(num_trials + warm_up):
 | 
			
		||||
                st = time.perf_counter()
 | 
			
		||||
| 
						 | 
				
			
			@ -376,6 +374,7 @@ def run_optimize_model_gpu(repo_id,
 | 
			
		|||
                print(output[0])
 | 
			
		||||
                if i >= warm_up:
 | 
			
		||||
                    result[in_out].append([model.first_cost, model.rest_cost_mean, model.encoder_time])
 | 
			
		||||
    torch.xpu.empty_cache()
 | 
			
		||||
    return result
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue