use sdp in baichuan2 13b (#11198)

This commit is contained in:
Yishuo Wang 2024-06-04 15:39:00 +08:00 committed by GitHub
parent 9f8074c653
commit 6454655dcc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -204,24 +204,25 @@ def baichuan_attention_forward_13b(
else: else:
attention_mask = attention_mask[:, None, -q_len:, :] attention_mask = attention_mask[:, None, -q_len:, :]
if use_quantize_kv and q_len == 1: if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
import xe_addons import xe_addons
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states) if use_quantize_kv:
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
attention_mask)
else:
attn_output = xe_addons.sdp(query_states, key_states, value_states,
attention_mask)
attn_weights = None
else: else:
if use_quantize_kv: if use_quantize_kv:
key_states, value_states = restore_fp8_kv_cache(key_states, value_states, key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
query_states.dtype) query_states.dtype)
attn_weights = torch.matmul(query_states, attn_weights = torch.matmul(query_states,
key_states.transpose(2, 3)) key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
attn_weights = attn_weights / math.sqrt(self.head_dim) if attention_mask is not None:
if attention_mask is not None: attn_weights = attn_weights + attention_mask
attn_weights = attn_weights + attention_mask attn_weights = attn_weights.to(query_states.dtype)
attn_weights = attn_weights.to(query_states.dtype) attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
if use_quantize_kv and q_len == 1:
import xe_addons
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
else:
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states) attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
attn_output = attn_output.transpose(1, 2) attn_output = attn_output.transpose(1, 2)
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size) attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)