use sdp in baichuan2 13b (#11198)
This commit is contained in:
parent
9f8074c653
commit
6454655dcc
1 changed files with 13 additions and 12 deletions
|
|
@ -204,24 +204,25 @@ def baichuan_attention_forward_13b(
|
||||||
else:
|
else:
|
||||||
attention_mask = attention_mask[:, None, -q_len:, :]
|
attention_mask = attention_mask[:, None, -q_len:, :]
|
||||||
|
|
||||||
if use_quantize_kv and q_len == 1:
|
if use_sdp(q_len, kv_seq_len, self.head_dim, query_states):
|
||||||
import xe_addons
|
import xe_addons
|
||||||
attn_weights = xe_addons.query_key_fp8_matmul(query_states, key_states)
|
if use_quantize_kv:
|
||||||
|
attn_output = xe_addons.sdp_fp8(query_states, key_states, value_states,
|
||||||
|
attention_mask)
|
||||||
|
else:
|
||||||
|
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||||
|
attention_mask)
|
||||||
|
attn_weights = None
|
||||||
else:
|
else:
|
||||||
if use_quantize_kv:
|
if use_quantize_kv:
|
||||||
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
key_states, value_states = restore_fp8_kv_cache(key_states, value_states,
|
||||||
query_states.dtype)
|
query_states.dtype)
|
||||||
attn_weights = torch.matmul(query_states,
|
attn_weights = torch.matmul(query_states,
|
||||||
key_states.transpose(2, 3))
|
key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
||||||
attn_weights = attn_weights / math.sqrt(self.head_dim)
|
if attention_mask is not None:
|
||||||
if attention_mask is not None:
|
attn_weights = attn_weights + attention_mask
|
||||||
attn_weights = attn_weights + attention_mask
|
attn_weights = attn_weights.to(query_states.dtype)
|
||||||
attn_weights = attn_weights.to(query_states.dtype)
|
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
||||||
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
|
||||||
if use_quantize_kv and q_len == 1:
|
|
||||||
import xe_addons
|
|
||||||
attn_output = xe_addons.attn_value_fp8_matmul(attn_weights, value_states)
|
|
||||||
else:
|
|
||||||
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
|
attn_output = torch.matmul(attn_weights.to(dtype=value_states.dtype), value_states)
|
||||||
attn_output = attn_output.transpose(1, 2)
|
attn_output = attn_output.transpose(1, 2)
|
||||||
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue