[LLM] llm transformers api support batch actions (#8288)

* llm transformers api support batch actions

* align with transformer

* meet comment
This commit is contained in:
Yina Chen 2023-06-08 15:10:08 +08:00 committed by GitHub
parent ea3cf6783e
commit 637b72f2ad

View file

@ -30,33 +30,78 @@ class GenerationMixin:
Pass custom parameter values to 'generate' .
"""
def tokenize(self, text: str, add_bos: bool = True) -> List[int]:
def tokenize(self,
text: Union[str, List[str]],
add_bos: bool = True) -> List[int]:
'''
Decode the id to words
:param text: The text to be tokenized
:param text: The text or batch of text to be tokenized
:param add_bos:
:return: list of ids that indicates the tokens
'''
if isinstance(text, str):
bstr = text.encode()
is_batched = True if isinstance(text, (list, tuple)) else False
if not is_batched:
text = [text]
result = []
for t in text:
if isinstance(t, str):
bstr = t.encode()
else:
bstr = text
return self._tokenize(bstr, add_bos)
bstr = t
result.append(self._tokenize(bstr, add_bos))
if not is_batched:
result = result[0]
return result
def decode(self, tokens: List[int]) -> str:
'''
Decode the id to words
Examples:
>>> llm = AutoModelForCausalLM.from_pretrained("gpt4all-model-q4_0.bin",
model_family="llama")
>>> tokens = llm.tokenize("Q: Tell me something about Intel. A:")
>>> tokens_id = llm.generate(tokens, max_new_tokens=32)
>>> llm.decode(tokens_id[0])
:param tokens: list of ids that indicates the tokens, mostly generated by generate
:return: decoded string
'''
return self.detokenize(tokens).decode()
def batch_decode(self,
tokens: Union[List[int], List[List[int]]]) -> str:
'''
Decode the id to words
:param tokens: list or a batch of list of ids that indicates the tokens,
mostly generated by generate
:return: decoded string
'''
is_batched = False
if tokens is not None and len(tokens) > 0:
if isinstance(tokens[0], Sequence):
is_batched = True
else:
tokens = [tokens]
else:
return None
results = []
for t in tokens:
results.append(self.decode(t))
if not is_batched:
results = results[0]
return results
def generate(
self,
inputs: Optional[Sequence[int]]=None,
inputs: Union[Optional[Sequence[int]],
Sequence[Sequence[int]]]=None,
max_new_tokens: int = 128,
top_k: int = 40,
top_p: float = 0.95,
@ -71,7 +116,9 @@ class GenerationMixin:
mirostat_eta: float = 0.1,
stop: Optional[Union[str, List[str]]]=[], # TODO: rebase to support stopping_criteria
**kwargs,
) -> Union[Optional[Sequence[int]], None]:
) -> Union[Optional[Sequence[int]],
Sequence[Sequence[int]],
None]:
# TODO: modify docs
"""Create a generator of tokens from a prompt.
@ -80,7 +127,7 @@ class GenerationMixin:
model_family="llama")
>>> tokens = llm.tokenize("Q: Tell me something about Intel. A:")
>>> tokens_id = llm.generate(tokens, max_new_tokens=32)
>>> llm.decode(tokens_id)
>>> llm.batch_decode(tokens_id)
Args:
tokens: The prompt tokens.
@ -93,7 +140,15 @@ class GenerationMixin:
Yields:
The generated tokens.
"""
tokens = self._generate(tokens=inputs,
if inputs and len(inputs) > 0:
if not isinstance(inputs[0], Sequence):
inputs = [inputs]
else:
return None
results = []
for input in inputs:
tokens = self._generate(tokens=input,
top_k=top_k,
top_p=top_p,
temp=temperature,
@ -113,4 +168,6 @@ class GenerationMixin:
break
res_list.append(token)
word_count += 1
return res_list
results.append(res_list)
return results