parent
							
								
									84d5f40936
								
							
						
					
					
						commit
						63681af97e
					
				
					 5 changed files with 262 additions and 9 deletions
				
			
		| 
						 | 
					@ -19,7 +19,12 @@ pip install einops # additional package required for falcon-7b-instruct and falc
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. (Optional) Download Model and Replace File
 | 
					### 2. (Optional) Download Model and Replace File
 | 
				
			||||||
If you select the Falcon models ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided two updated files ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py) and [falcon-40b-instruct/modelling_RW.py](./falcon-40b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
 | 
					If you select the Falcon models ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided two updated files ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py) and [falcon-40b-instruct/modelling_RW.py](./falcon-40b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
 | 
				
			||||||
 | 
					After transformers 4.36, only transformer models are supported since remote code diverges from transformer model code, make sure set `trust_remote_code=False`.
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					 model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              load_in_4bit=True,
 | 
				
			||||||
 | 
					                                              trust_remote_code=False)
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.1 Download Model
 | 
					#### 2.1 Download Model
 | 
				
			||||||
You could use the following code to download  [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
 | 
					You could use the following code to download  [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) or [tiiuae/falcon-40b-instruct](https://huggingface.co/tiiuae/falcon-40b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -43,11 +43,11 @@ if __name__ == '__main__':
 | 
				
			||||||
    # which convert the relevant layers in the model into INT4 format
 | 
					    # which convert the relevant layers in the model into INT4 format
 | 
				
			||||||
    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
					    model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
                                                 load_in_4bit=True,
 | 
					                                                 load_in_4bit=True,
 | 
				
			||||||
                                                 trust_remote_code=True)
 | 
					                                                 trust_remote_code=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # Load tokenizer
 | 
					    # Load tokenizer
 | 
				
			||||||
    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
					    tokenizer = AutoTokenizer.from_pretrained(model_path,
 | 
				
			||||||
                                              trust_remote_code=True)
 | 
					                                              trust_remote_code=False)
 | 
				
			||||||
    
 | 
					    
 | 
				
			||||||
    # Generate predicted tokens
 | 
					    # Generate predicted tokens
 | 
				
			||||||
    with torch.inference_mode():
 | 
					    with torch.inference_mode():
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -30,7 +30,12 @@ pip install einops # additional package required for falcon-7b-instruct to condu
 | 
				
			||||||
 | 
					
 | 
				
			||||||
### 2. (Optional) Download Model and Replace File
 | 
					### 2. (Optional) Download Model and Replace File
 | 
				
			||||||
If you select the Falcon model ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided updated file ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
 | 
					If you select the Falcon model ([tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct)), please note that their code (`modelling_RW.py`) does not support KV cache at the moment. To address issue, we have provided updated file ([falcon-7b-instruct/modelling_RW.py](./falcon-7b-instruct/modelling_RW.py)), which can be used to achieve the best performance using BigDL-LLM INT4 optimizations with KV cache support.
 | 
				
			||||||
 | 
					After transformers 4.36, only transformer models are supported since remote code diverges from transformer model code, make sure set `trust_remote_code=False`.
 | 
				
			||||||
 | 
					```python
 | 
				
			||||||
 | 
					 model = AutoModelForCausalLM.from_pretrained(model_path,
 | 
				
			||||||
 | 
					                                              load_in_4bit=True,
 | 
				
			||||||
 | 
					                                              trust_remote_code=False)
 | 
				
			||||||
 | 
					```
 | 
				
			||||||
 | 
					
 | 
				
			||||||
#### 2.1 Download Model
 | 
					#### 2.1 Download Model
 | 
				
			||||||
You could use the following code to download  [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
 | 
					You could use the following code to download  [tiiuae/falcon-7b-instruct](https://huggingface.co/tiiuae/falcon-7b-instruct) with a specific snapshot id. Please note that the `modelling_RW.py` files that we provide are based on these specific commits.
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -818,11 +818,20 @@ def _optimize_post(model, lightweight_bmm=False):
 | 
				
			||||||
            elif "FalconForCausalLM" in model.config.architectures:
 | 
					            elif "FalconForCausalLM" in model.config.architectures:
 | 
				
			||||||
                if model.config.hidden_size != 4544:
 | 
					                if model.config.hidden_size != 4544:
 | 
				
			||||||
                    # falcon-180b and new falcon-40b
 | 
					                    # falcon-180b and new falcon-40b
 | 
				
			||||||
                    from bigdl.llm.transformers.models.falcon import falcon_attention_forward
 | 
					                    if version.parse(trans_version) >= version.parse("4.36.0"):
 | 
				
			||||||
                    convert_forward(model,
 | 
					                    # transformers version >= 4.36.0
 | 
				
			||||||
                                    module.FalconAttention,
 | 
					                        from bigdl.llm.transformers.models.falcon import falcon_attention_forward_4_36
 | 
				
			||||||
                                    falcon_attention_forward
 | 
					                        convert_forward(model,
 | 
				
			||||||
                                    )
 | 
					                                        module.FalconAttention,
 | 
				
			||||||
 | 
					                                        falcon_attention_forward_4_36
 | 
				
			||||||
 | 
					                                        )
 | 
				
			||||||
 | 
					                    else:
 | 
				
			||||||
 | 
					                        from bigdl.llm.transformers.models.falcon import falcon_attention_forward
 | 
				
			||||||
 | 
					                        convert_forward(model,
 | 
				
			||||||
 | 
					                                        module.FalconAttention,
 | 
				
			||||||
 | 
					                                        falcon_attention_forward
 | 
				
			||||||
 | 
					                                        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
 | 
					    elif model.config.model_type == "baichuan" and model.config.vocab_size == 125696:
 | 
				
			||||||
        # baichuan2
 | 
					        # baichuan2
 | 
				
			||||||
        if model.config.hidden_size == 4096:
 | 
					        if model.config.hidden_size == 4096:
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
| 
						 | 
					@ -39,11 +39,50 @@ import torch
 | 
				
			||||||
from torch.nn import functional as F
 | 
					from torch.nn import functional as F
 | 
				
			||||||
from bigdl.llm.utils.common import invalidInputError
 | 
					from bigdl.llm.utils.common import invalidInputError
 | 
				
			||||||
from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
					from bigdl.llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
 | 
				
			||||||
 | 
					import warnings
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
					KV_CACHE_ALLOC_BLOCK_LENGTH = 256
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Copied from transformers.models.llama.modeling_llama.rotate_half
 | 
				
			||||||
 | 
					def rotate_half(x):
 | 
				
			||||||
 | 
					    """Rotates half the hidden dims of the input."""
 | 
				
			||||||
 | 
					    x1 = x[..., : x.shape[-1] // 2]
 | 
				
			||||||
 | 
					    x2 = x[..., x.shape[-1] // 2:]
 | 
				
			||||||
 | 
					    return torch.cat((-x2, x1), dim=-1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					# Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
 | 
				
			||||||
 | 
					def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
 | 
				
			||||||
 | 
					    """Applies Rotary Position Embedding to the query and key tensors.
 | 
				
			||||||
 | 
					    Args:
 | 
				
			||||||
 | 
					        q (`torch.Tensor`): The query tensor.
 | 
				
			||||||
 | 
					        k (`torch.Tensor`): The key tensor.
 | 
				
			||||||
 | 
					        cos (`torch.Tensor`): The cosine part of the rotary embedding.
 | 
				
			||||||
 | 
					        sin (`torch.Tensor`): The sine part of the rotary embedding.
 | 
				
			||||||
 | 
					        position_ids (`torch.Tensor`):
 | 
				
			||||||
 | 
					            The position indices of the tokens corresponding to the query and key tensors. For
 | 
				
			||||||
 | 
					            example, this can be used to pass offsetted position ids when working with a KV-cache.
 | 
				
			||||||
 | 
					        unsqueeze_dim (`int`, *optional*, defaults to 1):
 | 
				
			||||||
 | 
					            The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze
 | 
				
			||||||
 | 
					            cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the
 | 
				
			||||||
 | 
					            dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids]
 | 
				
			||||||
 | 
					            have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape
 | 
				
			||||||
 | 
					            [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
 | 
				
			||||||
 | 
					            cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k.
 | 
				
			||||||
 | 
					            Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim],
 | 
				
			||||||
 | 
					            then set unsqueeze_dim=2.
 | 
				
			||||||
 | 
					    Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary
 | 
				
			||||||
 | 
					        Position Embedding.
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    cos = cos[position_ids].unsqueeze(unsqueeze_dim)
 | 
				
			||||||
 | 
					    sin = sin[position_ids].unsqueeze(unsqueeze_dim)
 | 
				
			||||||
 | 
					    q_embed = (q * cos) + (rotate_half(q) * sin)
 | 
				
			||||||
 | 
					    k_embed = (k * cos) + (rotate_half(k) * sin)
 | 
				
			||||||
 | 
					    return q_embed, k_embed
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def rw_attention_forward_7b(
 | 
					def rw_attention_forward_7b(
 | 
				
			||||||
    self,
 | 
					    self,
 | 
				
			||||||
    hidden_states: torch.Tensor,
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
| 
						 | 
					@ -592,3 +631,198 @@ def falcon_attention_forward(
 | 
				
			||||||
            return output_tensor, present, attention_probs
 | 
					            return output_tensor, present, attention_probs
 | 
				
			||||||
        else:
 | 
					        else:
 | 
				
			||||||
            return output_tensor, present
 | 
					            return output_tensor, present
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def falcon_attention_forward_4_36(
 | 
				
			||||||
 | 
					    self,
 | 
				
			||||||
 | 
					    hidden_states: torch.Tensor,
 | 
				
			||||||
 | 
					    alibi: Optional[torch.Tensor],
 | 
				
			||||||
 | 
					    attention_mask: torch.Tensor,
 | 
				
			||||||
 | 
					    position_ids: Optional[torch.LongTensor]=None,
 | 
				
			||||||
 | 
					    layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]]=None,
 | 
				
			||||||
 | 
					    head_mask: Optional[torch.Tensor]=None,
 | 
				
			||||||
 | 
					    use_cache: bool=False,
 | 
				
			||||||
 | 
					    output_attentions: bool=False,
 | 
				
			||||||
 | 
					    **kwargs,
 | 
				
			||||||
 | 
					):
 | 
				
			||||||
 | 
					    """ based on transformers==4.36.0
 | 
				
			||||||
 | 
					        https://github.com/huggingface/transformers/blob/v4.36.0/src/transformers/models/falcon/modeling_falcon.py
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if "padding_mask" in kwargs:
 | 
				
			||||||
 | 
					        warnings.warn(
 | 
				
			||||||
 | 
					            "Passing `padding_mask` is deprecated and will be removed in v4.37. \
 | 
				
			||||||
 | 
					                Please make sure use `attention_mask` instead.`"
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    fused_qkv = self.query_key_value(hidden_states)  # [batch_size, seq_length, 3 x hidden_size]
 | 
				
			||||||
 | 
					    num_kv_heads = self.num_heads if self.new_decoder_architecture else self.num_kv_heads
 | 
				
			||||||
 | 
					    # 3 x [batch_size, seq_length, num_heads, head_dim]
 | 
				
			||||||
 | 
					    (query_layer, key_layer, value_layer) = self._split_heads(fused_qkv)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    batch_size, query_length, _, _ = query_layer.shape
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query_layer = query_layer.transpose(1, 2).reshape(
 | 
				
			||||||
 | 
					        batch_size, self.num_heads, query_length, self.head_dim)
 | 
				
			||||||
 | 
					    key_layer = key_layer.transpose(1, 2).reshape(
 | 
				
			||||||
 | 
					        batch_size, num_kv_heads, query_length, self.head_dim)
 | 
				
			||||||
 | 
					    value_layer = value_layer.transpose(1, 2).reshape(
 | 
				
			||||||
 | 
					        batch_size, num_kv_heads, query_length, self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    kv_seq_len = key_layer.shape[-2]
 | 
				
			||||||
 | 
					    device = hidden_states.device
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if layer_past is not None:
 | 
				
			||||||
 | 
					        kv_seq_len += layer_past[0].shape[-2]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if alibi is None:
 | 
				
			||||||
 | 
					        cos, sin = self.rotary_emb(value_layer, seq_len=kv_seq_len)
 | 
				
			||||||
 | 
					        query_layer, key_layer = apply_rotary_pos_emb(
 | 
				
			||||||
 | 
					            query_layer, key_layer, cos, sin, position_ids)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if layer_past is not None:
 | 
				
			||||||
 | 
					        # reuse k, v, self_attention
 | 
				
			||||||
 | 
					        cache_k = layer_past[0].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
				
			||||||
 | 
					        cache_v = layer_past[1].view(batch_size, self.num_heads, -1, self.head_dim)
 | 
				
			||||||
 | 
					        if cache_k.stride()[1] <= cache_k.size(2) * cache_k.size(3):
 | 
				
			||||||
 | 
					            # allocate new
 | 
				
			||||||
 | 
					            new_cache_k, new_cache_v = extend_kv_cache(
 | 
				
			||||||
 | 
					                batch_size,
 | 
				
			||||||
 | 
					                self.num_heads,
 | 
				
			||||||
 | 
					                self.head_dim,
 | 
				
			||||||
 | 
					                cache_k.size(2),
 | 
				
			||||||
 | 
					                kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
 | 
				
			||||||
 | 
					                dtype=cache_k.dtype,
 | 
				
			||||||
 | 
					                device=device
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            new_cache_k[:] = cache_k
 | 
				
			||||||
 | 
					            new_cache_v[:] = cache_v
 | 
				
			||||||
 | 
					            cache_k = new_cache_k
 | 
				
			||||||
 | 
					            cache_v = new_cache_v
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        key_layer, value_layer = append_kv_cache(cache_k, cache_v, key_layer, value_layer)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    elif use_cache:
 | 
				
			||||||
 | 
					        max_cache_length = kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH
 | 
				
			||||||
 | 
					        new_key_states, new_value_states = init_kv_cache(
 | 
				
			||||||
 | 
					            batch_size,
 | 
				
			||||||
 | 
					            self.num_heads,
 | 
				
			||||||
 | 
					            self.head_dim,
 | 
				
			||||||
 | 
					            kv_seq_len,
 | 
				
			||||||
 | 
					            max_cache_length,
 | 
				
			||||||
 | 
					            dtype=key_layer.dtype,
 | 
				
			||||||
 | 
					            device=device
 | 
				
			||||||
 | 
					        )
 | 
				
			||||||
 | 
					        new_key_states[:] = key_layer
 | 
				
			||||||
 | 
					        new_value_states[:] = value_layer
 | 
				
			||||||
 | 
					        key_layer = new_key_states
 | 
				
			||||||
 | 
					        value_layer = new_value_states
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    query_layer = query_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
				
			||||||
 | 
					    key_layer = key_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
				
			||||||
 | 
					    value_layer = value_layer.view(batch_size, self.num_heads, -1, self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    kv_length = key_layer.shape[-2]
 | 
				
			||||||
 | 
					    if use_cache:
 | 
				
			||||||
 | 
					        present = (key_layer, value_layer)
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        present = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # SDPA with memory-efficient backend is currently (torch==2.1.2)
 | 
				
			||||||
 | 
					    # bugged with non-contiguous inputs with custom attn_mask,
 | 
				
			||||||
 | 
					    # Reference: https://github.com/pytorch/pytorch/issues/112577.
 | 
				
			||||||
 | 
					    if query_layer.device.type == "cuda" and attention_mask is not None:
 | 
				
			||||||
 | 
					        query_layer = query_layer.contiguous()
 | 
				
			||||||
 | 
					        key_layer = key_layer.contiguous()
 | 
				
			||||||
 | 
					        value_layer = value_layer.contiguous()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    if alibi is None:
 | 
				
			||||||
 | 
					        if self._use_sdpa and not output_attentions:
 | 
				
			||||||
 | 
					            attn_output = F.scaled_dot_product_attention(
 | 
				
			||||||
 | 
					                query_layer,
 | 
				
			||||||
 | 
					                key_layer,
 | 
				
			||||||
 | 
					                value_layer,
 | 
				
			||||||
 | 
					                attention_mask,
 | 
				
			||||||
 | 
					                0.0,
 | 
				
			||||||
 | 
					                # The query_length > 1 is necessary to match with
 | 
				
			||||||
 | 
					                # AttentionMaskConverter.to_causal_4d that does not create a causal mask in case
 | 
				
			||||||
 | 
					                # query_length == 1.
 | 
				
			||||||
 | 
					                is_causal=self.is_causal and attention_mask is None and query_length > 1,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            attention_scores = None
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            attention_scores = query_layer @ key_layer.transpose(-1, -2)
 | 
				
			||||||
 | 
					            attention_scores /= math.sqrt(self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attention_scores = F.softmax(
 | 
				
			||||||
 | 
					                attention_scores + attention_mask, dim=-1, dtype=hidden_states.dtype)
 | 
				
			||||||
 | 
					            # It is unclear why neither dropout nor head_mask is applied here
 | 
				
			||||||
 | 
					            # (while it is with alibi).
 | 
				
			||||||
 | 
					            attn_output = attention_scores @ value_layer
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        attn_output = attn_output.view(batch_size, self.num_heads, query_length, self.head_dim)
 | 
				
			||||||
 | 
					        attn_output = attn_output.permute(0, 2, 1, 3)
 | 
				
			||||||
 | 
					        attn_output = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        attn_output = self.dense(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if output_attentions:
 | 
				
			||||||
 | 
					            return attn_output, present, attention_scores
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            return attn_output, present
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    else:
 | 
				
			||||||
 | 
					        if self._use_sdpa and not output_attentions and head_mask is None:
 | 
				
			||||||
 | 
					            attn_output = F.scaled_dot_product_attention(
 | 
				
			||||||
 | 
					                query_layer,
 | 
				
			||||||
 | 
					                key_layer,
 | 
				
			||||||
 | 
					                value_layer,
 | 
				
			||||||
 | 
					                attn_mask=attention_mask,
 | 
				
			||||||
 | 
					                dropout_p=self.attention_dropout.p if self.training else 0.0,
 | 
				
			||||||
 | 
					                is_causal=self.is_causal and attention_mask is None and query_length > 1,
 | 
				
			||||||
 | 
					            )
 | 
				
			||||||
 | 
					            attn_output = attn_output.transpose(1, 2)
 | 
				
			||||||
 | 
					            attn_output = attn_output.reshape(
 | 
				
			||||||
 | 
					                batch_size, query_length, self.num_heads * self.head_dim)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attn_output = self.dense(attn_output)
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            matmul_result = query_layer @ key_layer.transpose(-1, -2)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # change view to [batch_size, num_heads, q_length, kv_length]
 | 
				
			||||||
 | 
					            attention_scores = matmul_result.view(
 | 
				
			||||||
 | 
					                batch_size, self.num_heads, query_length, kv_length)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # cast attention scores to fp32, compute scaled softmax and cast back to initial dtype -
 | 
				
			||||||
 | 
					            # [batch_size, num_heads, q_length, kv_length]
 | 
				
			||||||
 | 
					            input_dtype = attention_scores.dtype
 | 
				
			||||||
 | 
					            # `float16` has a minimum value of -65504.0, whereas `bfloat16` and `float32` have a
 | 
				
			||||||
 | 
					            # minimum value of `-3.4e+38`
 | 
				
			||||||
 | 
					            if input_dtype == torch.float16 or input_dtype == torch.bfloat16:
 | 
				
			||||||
 | 
					                attention_scores = attention_scores.to(torch.float32)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attention_logits = attention_scores + alibi.view(batch_size, self.num_heads, 1, -1)
 | 
				
			||||||
 | 
					            attention_logits *= self.inv_norm_factor
 | 
				
			||||||
 | 
					            attention_probs = F.softmax(
 | 
				
			||||||
 | 
					                attention_logits + attention_mask, dim=-1, dtype=hidden_states.dtype)
 | 
				
			||||||
 | 
					            # [batch_size, num_heads, q_length, kv_length]
 | 
				
			||||||
 | 
					            attention_probs = self.attention_dropout(attention_probs)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            if head_mask is not None:
 | 
				
			||||||
 | 
					                attention_probs = attention_probs * head_mask
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # change view [batch_size, num_heads, q_length, kv_length]
 | 
				
			||||||
 | 
					            attention_probs_reshaped = attention_probs.view(
 | 
				
			||||||
 | 
					                batch_size, self.num_heads, query_length, kv_length)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # matmul: [batch_size * num_heads, q_length, head_dim]
 | 
				
			||||||
 | 
					            attn_output = (attention_probs_reshaped @ value_layer).flatten(0, 1)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            # change view [batch_size, q_length, num_heads * head_dim]
 | 
				
			||||||
 | 
					            attn_output = self._merge_heads(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					            attn_output = self.dense(attn_output)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if output_attentions:
 | 
				
			||||||
 | 
					            return attn_output, present, attention_probs
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            return attn_output, present
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue