diff --git a/README.md b/README.md index 3bc8d584..68402281 100644 --- a/README.md +++ b/README.md @@ -155,25 +155,39 @@ To train a time series model with AutoML, first initialize [Orca Context](https: from bigdl.orca import init_orca_context #cluster_mode can be "local", "k8s" or "yarn" -sc = init_orca_context(cluster_mode="yarn", cores=4, memory="10g", num_nodes=2, init_ray_on_spark=True) +init_orca_context(cluster_mode="yarn", cores=4, memory="10g", num_nodes=2, init_ray_on_spark=True) ``` -Next, create an _AutoTSTrainer_. +Then, create _TSDataset_ for your data. +```python +from bigdl.chronos.data import TSDataset + +tsdata_train, tsdata_valid, tsdata_test\ + = TSDataset.from_pandas(df, + dt_col="dt_col", + target_col="target_col", + with_split=True, + val_ratio=0.1, + test_ratio=0.1) +``` + +Next, create an _AutoTSEstimator_. ```python -from bigdl.chronos.autots.deprecated.forecast import AutoTSTrainer +from bigdl.chronos.autots import AutoTSEstimator -trainer = AutoTSTrainer(dt_col="datetime", target_col="value") +autotsest = AutoTSEstimator(model='lstm') ``` -Finally, call ```fit``` on _AutoTSTrainer_, which applies AutoML to find the best model and hyper-parameters; it returns a _TSPipeline_ which can be used for prediction or evaluation. +Finally, call ```fit``` on _AutoTSEstimator_, which applies AutoML to find the best model and hyper-parameters; it returns a _TSPipeline_ which can be used for prediction or evaluation. ```python #train a pipeline with AutoML support -ts_pipeline = trainer.fit(train_df, validation_df) +ts_pipeline = autotsest.fit(data=tsdata_train, + validation_data=tsdata_valid) #predict -ts_pipeline.predict(test_df) +ts_pipeline.predict(tsdata_test) ``` See the Chronos [user guide](https://bigdl.readthedocs.io/en/latest/doc/Chronos/Overview/chronos.html) and [example](https://bigdl.readthedocs.io/en/latest/doc/Chronos/QuickStart/chronos-autotsest-quickstart.html) for more details.