LLM: Add mlp layer unit tests (#10200)
* add mlp layer unit tests * add download baichuan-13b * exclude llama for now * install additional packages * rename bash file * switch to Baichuan2 * delete attention related code * fix name errors in yml file
This commit is contained in:
		
							parent
							
								
									ca1166a0e5
								
							
						
					
					
						commit
						60e11b6739
					
				
					 4 changed files with 176 additions and 1 deletions
				
			
		
							
								
								
									
										19
									
								
								.github/workflows/llm_unit_tests.yml
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										19
									
								
								.github/workflows/llm_unit_tests.yml
									
									
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -235,6 +235,9 @@ jobs:
 | 
			
		|||
          echo "MPT_7B_ORIGIN_PATH=${ORIGIN_DIR}/mpt-7b-chat" >> "$GITHUB_ENV"
 | 
			
		||||
          echo "WHISPER_TINY_ORIGIN_PATH=${ORIGIN_DIR}/whisper-tiny" >> "$GITHUB_ENV"
 | 
			
		||||
 | 
			
		||||
          echo "MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH=${ORIGIN_DIR}/Mistral-7B-Instruct-v0.1" >> "$GITHUB_ENV"
 | 
			
		||||
          echo "BAICHUAN2_7B_ORIGIN_PATH=${ORIGIN_DIR}/Baichuan2-7B-Chat" >> "$GITHUB_ENV"
 | 
			
		||||
          echo "QWEN_7B_ORIGIN_PATH=${ORIGIN_DIR}/Qwen-7B-Chat" >> "$GITHUB_ENV"
 | 
			
		||||
      - name: Checkout repo
 | 
			
		||||
        uses: actions/checkout@f43a0e5ff2bd294095638e18286ca9a3d1956744 # actions/checkout@v3
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -303,6 +306,18 @@ jobs:
 | 
			
		|||
            echo "Directory $SPEECH_DATASET_PATH not found. Downloading from FTP server..."
 | 
			
		||||
            wget -r -nH --no-verbose --cut-dirs=2 $LLM_FTP_URL/llm/datasets/librispeech_asr_dummy -P $DATASET_DIR
 | 
			
		||||
          fi
 | 
			
		||||
          if [ ! -d $MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH ]; then
 | 
			
		||||
            echo "Directory $MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH not found. Downloading from FTP server..."
 | 
			
		||||
            wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/llm/Mistral-7B-Instruct-v0.1 -P $ORIGIN_DIR
 | 
			
		||||
          fi
 | 
			
		||||
          if [ ! -d $QWEN_7B_ORIGIN_PATH ]; then
 | 
			
		||||
            echo "Directory $QWEN_7B_ORIGIN_PATH not found. Downloading from FTP server..."
 | 
			
		||||
            wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/llm/Qwen-7B-Chat -P $ORIGIN_DIR
 | 
			
		||||
          fi
 | 
			
		||||
          if [ ! -d $BAICHUAN2_7B_ORIGIN_PATH ]; then
 | 
			
		||||
            echo "Directory $BAICHUAN2_7B_ORIGIN_PATH not found. Downloading from FTP server..."
 | 
			
		||||
            wget -r -nH --no-verbose --cut-dirs=1 $LLM_FTP_URL/llm/Baichuan2-7B-Chat -P $ORIGIN_DIR
 | 
			
		||||
          fi
 | 
			
		||||
          
 | 
			
		||||
      - name: Run LLM inference test
 | 
			
		||||
        shell: bash
 | 
			
		||||
| 
						 | 
				
			
			@ -313,8 +328,10 @@ jobs:
 | 
			
		|||
          elif [[ '${{ matrix.pytorch-version }}' == '2.0' ]]; then
 | 
			
		||||
            source /opt/intel/oneapi/setvars.sh
 | 
			
		||||
          fi
 | 
			
		||||
          python -m pip install datasets librosa soundfile einops
 | 
			
		||||
          python -m pip install datasets librosa soundfile einops tiktoken transformers_stream_generator
 | 
			
		||||
          bash python/llm/test/run-llm-inference-tests-gpu.sh
 | 
			
		||||
          python -m pip install transformers==4.34.0 
 | 
			
		||||
          bash python/llm/test/run-llm-inference-tests-gpu-434.sh
 | 
			
		||||
 | 
			
		||||
      - name: Run LLM example tests
 | 
			
		||||
        shell: bash
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										129
									
								
								python/llm/test/inference_gpu/test_transformers_api_mlp.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										129
									
								
								python/llm/test/inference_gpu/test_transformers_api_mlp.py
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,129 @@
 | 
			
		|||
#
 | 
			
		||||
# Copyright 2016 The BigDL Authors.
 | 
			
		||||
#
 | 
			
		||||
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
			
		||||
# you may not use this file except in compliance with the License.
 | 
			
		||||
# You may obtain a copy of the License at
 | 
			
		||||
#
 | 
			
		||||
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
			
		||||
#
 | 
			
		||||
# Unless required by applicable law or agreed to in writing, software
 | 
			
		||||
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
			
		||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
			
		||||
# See the License for the specific language governing permissions and
 | 
			
		||||
# limitations under the License.
 | 
			
		||||
#
 | 
			
		||||
 
 | 
			
		||||
import os
 | 
			
		||||
import pytest
 | 
			
		||||
 
 | 
			
		||||
import torch
 | 
			
		||||
from bigdl.llm.transformers import AutoModelForCausalLM, AutoModel
 | 
			
		||||
from transformers import LlamaTokenizer, AutoTokenizer
 | 
			
		||||
 
 | 
			
		||||
device = os.environ['DEVICE']
 | 
			
		||||
print(f'Running on {device}')
 | 
			
		||||
 
 | 
			
		||||
PROMPT = "Once upon a time, there existed a little girl who liked to have adventures. She wanted to go to places and meet new people, and have fun"
 | 
			
		||||
TEST_MODEL_LIST = [
 | 
			
		||||
    ("Qwen-7B-Chat", AutoModelForCausalLM, AutoTokenizer, os.environ.get('QWEN_7B_ORIGIN_PATH')),
 | 
			
		||||
    ("Mistral-7B-Instruct-v0.1", AutoModelForCausalLM, AutoTokenizer, os.environ.get('MISTRAL_7B_INSTRUCT_V0_1_ORIGIN_PATH'))
 | 
			
		||||
]
 | 
			
		||||
 
 | 
			
		||||
class Test_Optimize_Gpu_Model:
 | 
			
		||||
    def setup_method(self):
 | 
			
		||||
        self.layer_outputs = []
 | 
			
		||||
        self.pre_layer_outputs = []
 | 
			
		||||
 
 | 
			
		||||
    def run_optimize_gpu_model(self, Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound):
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            def pre_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.pre_layer_outputs.append(output)
 | 
			
		||||
                
 | 
			
		||||
            def forward_hook(module, input, output, layer_name):
 | 
			
		||||
                self.layer_outputs.append(output)
 | 
			
		||||
 
 | 
			
		||||
            tokenizer = Tokenizer.from_pretrained(model_path, trust_remote_code=True)
 | 
			
		||||
            input_ids = tokenizer.encode(PROMPT, return_tensors="pt").to(device)
 | 
			
		||||
 
 | 
			
		||||
            model = Model.from_pretrained(model_path,
 | 
			
		||||
                                        load_in_4bit=True,
 | 
			
		||||
                                        optimize_model=False,
 | 
			
		||||
                                        trust_remote_code=True)
 | 
			
		||||
            model = model.to(device)
 | 
			
		||||
            for layer_name, layer_module in model.named_modules():
 | 
			
		||||
                if layer_name == layer_before_MLP:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: pre_forward_hook(module, input,
 | 
			
		||||
                                                                                            output, layer_name))
 | 
			
		||||
                if layer_name == MLP_layer:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_base_model = (model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            layer_tensor = self.layer_outputs.pop()
 | 
			
		||||
            model.to('cpu')
 | 
			
		||||
 
 | 
			
		||||
            opt_model = Model.from_pretrained(model_path,
 | 
			
		||||
                                            load_in_4bit=True,
 | 
			
		||||
                                            optimize_model=True,
 | 
			
		||||
                                            trust_remote_code=True)
 | 
			
		||||
            opt_model = opt_model.to(device)
 | 
			
		||||
 
 | 
			
		||||
 
 | 
			
		||||
            def replace_forward_hook(module, input, output, layer_name):
 | 
			
		||||
                output = self.pre_layer_outputs[0]
 | 
			
		||||
                return output
 | 
			
		||||
 
 | 
			
		||||
            for layer_name, layer_module in opt_model.named_modules():
 | 
			
		||||
                if layer_name == layer_before_MLP:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: replace_forward_hook(module, input,
 | 
			
		||||
                                                                                                output, layer_name))
 | 
			
		||||
                if layer_name == MLP_layer:
 | 
			
		||||
                    layer_module.register_forward_hook(
 | 
			
		||||
                        lambda module, input, output, layer_name=layer_name: forward_hook(module, input,
 | 
			
		||||
                                                                                        output, layer_name))
 | 
			
		||||
            logits_optimized_model = (opt_model(input_ids)).logits
 | 
			
		||||
            # the list `layer_output` has only one element.
 | 
			
		||||
            opt_layer_tensor = self.layer_outputs[0]
 | 
			
		||||
            opt_model.to('cpu')
 | 
			
		||||
 
 | 
			
		||||
 
 | 
			
		||||
            MLP_output_diff = []
 | 
			
		||||
            for i, (t1, t2) in enumerate(zip(layer_tensor, opt_layer_tensor)):
 | 
			
		||||
                if t1 is not None and t2 is not None:
 | 
			
		||||
                    if isinstance(t1, torch.Tensor) and isinstance(t2, torch.Tensor):
 | 
			
		||||
                        MLP_output_diff.append(t1 - t2)
 | 
			
		||||
                    else:
 | 
			
		||||
                        # 'past_key_value'is of type tuple as default.
 | 
			
		||||
                        for i, (t3, t4) in enumerate(zip(t1, t2)):
 | 
			
		||||
                            MLP_output_diff.append(t3 - t4)
 | 
			
		||||
 
 | 
			
		||||
            max_diff_tensor = [torch.max(item).item() for item in MLP_output_diff]
 | 
			
		||||
            print(max_diff_tensor)
 | 
			
		||||
           
 | 
			
		||||
            assert all(max_diff <= lower_bound for max_diff in max_diff_tensor)
 | 
			
		||||
   
 | 
			
		||||
    @pytest.mark.parametrize('Name, Model, Tokenizer, model_path',TEST_MODEL_LIST)
 | 
			
		||||
    def test_dynamic_functions(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        if Name == "Qwen-7B-Chat":
 | 
			
		||||
            self.Qwen_7B_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
        elif Name == "Mistral-7B-Instruct-v0.1":
 | 
			
		||||
            self.Mistral_7B_Instruct_gpu_model(Name, Model, Tokenizer, model_path)
 | 
			
		||||
 
 | 
			
		||||
   
 | 
			
		||||
    def Qwen_7B_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only compare the output of the last mlp layer.
 | 
			
		||||
        layer_before_MLP = "transformer.h.31.ln_2"
 | 
			
		||||
        MLP_layer = "transformer.h.31.mlp"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
 | 
			
		||||
   
 | 
			
		||||
    def Mistral_7B_Instruct_gpu_model(self, Name, Model, Tokenizer, model_path):
 | 
			
		||||
        # currently only compare the output of the last mlp layer.
 | 
			
		||||
        layer_before_MLP = "model.layers.31.post_attention_layernorm"
 | 
			
		||||
        MLP_layer = "model.layers.31.mlp"
 | 
			
		||||
        lower_bound = 0
 | 
			
		||||
        self.run_optimize_gpu_model(Name, Model, Tokenizer, model_path, MLP_layer, layer_before_MLP, lower_bound)
 | 
			
		||||
							
								
								
									
										28
									
								
								python/llm/test/run-llm-inference-tests-gpu-434.sh
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										28
									
								
								python/llm/test/run-llm-inference-tests-gpu-434.sh
									
									
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,28 @@
 | 
			
		|||
#!/bin/bash
 | 
			
		||||
 | 
			
		||||
export ANALYTICS_ZOO_ROOT=${ANALYTICS_ZOO_ROOT}
 | 
			
		||||
export LLM_HOME=${ANALYTICS_ZOO_ROOT}/python/llm/src
 | 
			
		||||
export LLM_INFERENCE_TEST_DIR=${ANALYTICS_ZOO_ROOT}/python/llm/test/inference_gpu
 | 
			
		||||
 | 
			
		||||
export USE_XETLA=OFF
 | 
			
		||||
export SYCL_PI_LEVEL_ZERO_USE_IMMEDIATE_COMMANDLISTS=1
 | 
			
		||||
export DEVICE='xpu'
 | 
			
		||||
 | 
			
		||||
set -e
 | 
			
		||||
 | 
			
		||||
echo "# Start testing inference"
 | 
			
		||||
start=$(date "+%s")
 | 
			
		||||
 | 
			
		||||
if [ -z "$THREAD_NUM" ]; then
 | 
			
		||||
  THREAD_NUM=2
 | 
			
		||||
fi
 | 
			
		||||
export OMP_NUM_THREADS=$THREAD_NUM
 | 
			
		||||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_mlp.py -v -s -k "Mistral"
 | 
			
		||||
unset BIGDL_LLM_XMX_DISABLED
 | 
			
		||||
 | 
			
		||||
now=$(date "+%s")
 | 
			
		||||
time=$((now-start))
 | 
			
		||||
 | 
			
		||||
echo "Bigdl-llm gpu inference tests for transformers 4.34.0 finished"
 | 
			
		||||
echo "Time used:$time seconds"
 | 
			
		||||
| 
						 | 
				
			
			@ -21,6 +21,7 @@ pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api.py -v -s
 | 
			
		|||
export BIGDL_LLM_XMX_DISABLED=1
 | 
			
		||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_final_logits.py -v -s
 | 
			
		||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_attention.py -v -s
 | 
			
		||||
pytest ${LLM_INFERENCE_TEST_DIR}/test_transformers_api_mlp.py -v -s -k "not Mistral"
 | 
			
		||||
unset BIGDL_LLM_XMX_DISABLED
 | 
			
		||||
 | 
			
		||||
now=$(date "+%s")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue