fix llama related import (#12611)

This commit is contained in:
Yishuo Wang 2024-12-25 16:23:52 +08:00 committed by GitHub
parent 54b1d7d333
commit 5f5ac8a856
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 2 additions and 137 deletions

View file

@ -45,7 +45,7 @@ import torch.nn.functional as F
import torch.nn as nn
import torch.utils.checkpoint
from typing import Optional, Tuple, List
from ipex_llm.transformers.models.llama import repeat_kv
from ipex_llm.transformers.models.utils import repeat_kv
from ipex_llm.transformers.models.utils import extend_kv_cache, append_kv_cache
from transformers.models.cohere.modeling_cohere import apply_rotary_pos_emb
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_36

View file

@ -34,8 +34,8 @@
import torch
from typing import Optional, Tuple
import torch.nn.functional as F
from ipex_llm.transformers.models.utils import repeat_kv
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb
from ipex_llm.transformers.models.llama import repeat_kv
from ipex_llm.transformers.models.utils import should_use_fuse_rope
from ipex_llm.transformers.models.utils import update_past_key_value
from ipex_llm.utils.common import invalidInputError

View file

@ -1,124 +0,0 @@
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#
# This file is adapted from
# https://github.com/Dao-AILab/flash-attention/blob/main/tests/layers/test_rotary.py
#
# Copyright (c) 2023, Tri Dao.
#
import os
import pytest
import torch
import intel_extension_for_pytorch as ipex
import torch.nn.functional as F
from einops import rearrange
from transformers.models.llama.modeling_llama import LlamaRotaryEmbedding
from transformers.models.llama.modeling_llama import (
apply_rotary_pos_emb as apply_rotary_pos_emb_llama,
)
from ipex_llm.transformers.layers.rope_embedding import apply_fast_rope_embedding
device = os.environ['DEVICE']
print(f'Running on {device}')
if 'xpu' not in device:
print(f"The layer.fast_rope test should running on xpu")
# llama-style rotary embedding
@pytest.mark.parametrize("seqlen_offset", [0, 711])
@pytest.mark.parametrize("rotary_emb_fraction", [0.5, 1.0])
def test_rotary(rotary_emb_fraction, seqlen_offset):
device = "xpu"
dtype = torch.float16
rtol, atol = (1e-3, 5e-3)
# set seed
torch.random.manual_seed(0)
batch_size = 8
seqlen_total = 2048
seqlen = seqlen_total - seqlen_offset
seqlen_offset = torch.tensor([[seqlen_offset]], device=device)
nheads = 32
headdim = 128
rotary_dim = int(headdim * rotary_emb_fraction)
qkv = torch.randn(
batch_size, seqlen, 3, nheads, headdim, device=device, dtype=dtype,
requires_grad=True
)
rotary_llama = LlamaRotaryEmbedding(rotary_dim, seqlen_total, device=device)
# Doesn't matter what tensor we pass in, rotary_llama only uses the device
# of the tensor
cos_llama, sin_llama = rotary_llama(qkv, seq_len=seqlen_total)
cos_llama, sin_llama = cos_llama.to(dtype=dtype), sin_llama.to(dtype=dtype)
q_pt = (
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
k_pt = (
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
q_pt_fast = (
rearrange(qkv[:, :, 0, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
k_pt_fast = (
rearrange(qkv[:, :, 1, :, :rotary_dim], "b s h d -> b h s d")
.detach()
.clone()
.requires_grad_(True)
)
q_llama, k_llama = apply_rotary_pos_emb_llama(q_pt, k_pt, cos_llama,
sin_llama, position_ids=seqlen_offset)
q_fast, k_fast = apply_fast_rope_embedding(q_pt_fast, k_pt_fast,
position_ids=seqlen_offset,
model_family="llama")
assert torch.allclose(
rearrange(q_llama, "b h s d -> b s h d"),
rearrange(q_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
)
assert torch.allclose(
rearrange(k_llama, "b h s d -> b s h d"),
rearrange(k_fast, "b h s d -> b s h d"), rtol=rtol, atol=atol
)
g = torch.randn_like(q_fast)
q_fast.backward(g)
k_fast.backward(g)
q_llama.backward(g)
k_llama.backward(g)
assert torch.allclose(
q_pt.grad,
q_pt_fast.grad,
rtol=rtol,
atol=atol,
)
assert torch.allclose(
k_pt.grad,
k_pt_fast.grad,
rtol=rtol,
atol=atol,
)
if __name__ == "__main__":
pytest.main([__file__])

View file

@ -43,14 +43,3 @@ time=$((now-start))
echo "Bigdl-llm gpu inference tests finished"
echo "Time used:$time seconds"
echo "# Start testing layers.fast_rope_embedding"
start=$(date "+%s")
pytest_check_error pytest ${LLM_INFERENCE_TEST_DIR}/test_layer_fast_rope.py -v -s
now=$(date "+%s")
time=$((now-start))
echo "Bigdl-llm gpu layers.fast_rope_embedding tests finished"
echo "Time used:$time seconds"