parent
ff83fad400
commit
5f13700c9f
2 changed files with 380 additions and 0 deletions
|
|
@ -1598,4 +1598,18 @@ def _optimize_post(model, lightweight_bmm=False):
|
||||||
module.StableLmModel,
|
module.StableLmModel,
|
||||||
stablelm_model_forward
|
stablelm_model_forward
|
||||||
)
|
)
|
||||||
|
elif model.config.model_type == 'minicpm':
|
||||||
|
from ipex_llm.transformers.models.minicpm import minicpm_attention_forward
|
||||||
|
modeling_module_name = model.__class__.__module__
|
||||||
|
module = importlib.import_module(modeling_module_name)
|
||||||
|
convert_forward(model,
|
||||||
|
module.MiniCPMMLP,
|
||||||
|
llama_mlp_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.MiniCPMRMSNorm,
|
||||||
|
llama_rms_norm_forward)
|
||||||
|
convert_forward(model,
|
||||||
|
module.MiniCPMAttention,
|
||||||
|
minicpm_attention_forward)
|
||||||
|
|
||||||
return model
|
return model
|
||||||
|
|
|
||||||
366
python/llm/src/ipex_llm/transformers/models/minicpm.py
Normal file
366
python/llm/src/ipex_llm/transformers/models/minicpm.py
Normal file
|
|
@ -0,0 +1,366 @@
|
||||||
|
#
|
||||||
|
# Copyright 2016 The BigDL Authors.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
#
|
||||||
|
# Some parts of this file is adapted from
|
||||||
|
# https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/models/llama/modeling_llama.py
|
||||||
|
# which is licensed under Apache License 2.0:
|
||||||
|
#
|
||||||
|
# Copyright 2021 The HuggingFace Inc. team. All rights reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import warnings
|
||||||
|
import importlib
|
||||||
|
import torch.nn as nn
|
||||||
|
from typing import Optional, Tuple, Union, List
|
||||||
|
import math
|
||||||
|
import os
|
||||||
|
import torch.nn.functional as F
|
||||||
|
from ipex_llm.transformers.models.utils import init_kv_cache, extend_kv_cache, append_kv_cache
|
||||||
|
from ipex_llm.transformers.models.utils import SILU
|
||||||
|
from ipex_llm.transformers.models.utils import init_fp8_kv_cache, append_fp8_kv_cache, \
|
||||||
|
restore_fp8_kv_cache, use_quantize_kv_cache
|
||||||
|
from ipex_llm.transformers.models.utils import is_enough_kv_cache_room_4_31, \
|
||||||
|
apply_rotary_pos_emb, is_enough_kv_cache_room_4_36
|
||||||
|
from ipex_llm.transformers.models.utils import apply_rotary_pos_emb_no_cache_xpu
|
||||||
|
from ipex_llm.transformers.models.utils import use_flash_attention, use_sdp, use_sdp_fp8
|
||||||
|
from ipex_llm.transformers.models.utils import mlp_fusion_check, fp16_fusion_check
|
||||||
|
from ipex_llm.transformers.models.utils import use_decoding_fast_path
|
||||||
|
from transformers.modeling_outputs import BaseModelOutputWithPast
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaModel
|
||||||
|
from ipex_llm.transformers.low_bit_linear import SYM_INT4, FP8E5, IQ2_XXS, FP4
|
||||||
|
from ipex_llm.ggml.quantize import ggml_tensor_qtype
|
||||||
|
from ipex_llm.utils.common import invalidInputError
|
||||||
|
from ipex_llm.transformers.models.llama import should_use_fuse_rope, should_use_xetla_mm_qkv
|
||||||
|
from ipex_llm.transformers.models.llama import fuse_qkv_weight_xetla, repeat_kv, native_sdp
|
||||||
|
from ipex_llm.transformers.models.llama import llama_decoding_fast_path_qtype_check
|
||||||
|
|
||||||
|
try:
|
||||||
|
from transformers.cache_utils import Cache, DynamicCache
|
||||||
|
except ImportError:
|
||||||
|
Cache = Tuple[torch.Tensor]
|
||||||
|
from transformers import logging
|
||||||
|
KV_CACHE_ALLOC_BLOCK_LENGTH = int(os.environ.get("KV_CACHE_ALLOC_BLOCK_LENGTH", 256))
|
||||||
|
|
||||||
|
|
||||||
|
def minicpm_attention_forward(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||||
|
forward_function = minicpm_attention_forward_original
|
||||||
|
return forward_function(
|
||||||
|
self=self,
|
||||||
|
hidden_states=hidden_states,
|
||||||
|
attention_mask=attention_mask,
|
||||||
|
position_ids=position_ids,
|
||||||
|
past_key_value=past_key_value,
|
||||||
|
output_attentions=output_attentions,
|
||||||
|
use_cache=use_cache,
|
||||||
|
cache_position=cache_position,
|
||||||
|
kwargs=kwargs
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def minicpm_attention_forward_original(
|
||||||
|
self,
|
||||||
|
hidden_states: torch.Tensor,
|
||||||
|
attention_mask: Optional[torch.Tensor] = None,
|
||||||
|
position_ids: Optional[torch.LongTensor] = None,
|
||||||
|
past_key_value: Optional[List[torch.FloatTensor]] = None,
|
||||||
|
output_attentions: bool = False,
|
||||||
|
use_cache: bool = False,
|
||||||
|
cache_position: Optional[torch.LongTensor] = None,
|
||||||
|
**kwargs
|
||||||
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[List[torch.FloatTensor]]]:
|
||||||
|
if "padding_mask" in kwargs:
|
||||||
|
warnings.warn(
|
||||||
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. "
|
||||||
|
"Please make sure use `attention_mask` instead.`"
|
||||||
|
)
|
||||||
|
|
||||||
|
bsz, q_len, hidden_size = hidden_states.size()
|
||||||
|
device = hidden_states.device
|
||||||
|
# for flash attention
|
||||||
|
original_dtype = hidden_states.dtype
|
||||||
|
|
||||||
|
use_fuse_rope = should_use_fuse_rope(self, hidden_states, position_ids)
|
||||||
|
enough_kv_room = is_enough_kv_cache_room_4_36(past_key_value, self.layer_idx, seq_len=q_len)
|
||||||
|
no_tp = not self.config.pretraining_tp > 1
|
||||||
|
decoding_fast_path = use_decoding_fast_path(self.q_proj,
|
||||||
|
use_fuse_rope,
|
||||||
|
enough_kv_room,
|
||||||
|
bsz * q_len,
|
||||||
|
llama_decoding_fast_path_qtype_check) and no_tp
|
||||||
|
|
||||||
|
# single batch decoding fast path
|
||||||
|
# forward_qkv takes will perform QKV projection, rotary position embedding
|
||||||
|
# and save the key/value states to cache, then return query states and the
|
||||||
|
# extended key/value cache
|
||||||
|
if decoding_fast_path:
|
||||||
|
hidden_states = hidden_states.view(1, -1)
|
||||||
|
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||||
|
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||||
|
kv_seq_len = cache_k.shape[-2]
|
||||||
|
import xe_linear
|
||||||
|
query_states, key_states, value_states = xe_linear.forward_qkv(hidden_states,
|
||||||
|
self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight,
|
||||||
|
position_ids,
|
||||||
|
cache_k, cache_v,
|
||||||
|
self.q_proj.weight.qtype,
|
||||||
|
self.v_proj.weight.qtype,
|
||||||
|
kv_seq_len,
|
||||||
|
self.head_dim,
|
||||||
|
self.rotary_emb.base,)
|
||||||
|
kv_seq_len += 1
|
||||||
|
# update past_key_value's seem_tokens and kv caches.
|
||||||
|
if self.layer_idx == 0:
|
||||||
|
past_key_value.seen_tokens = kv_seq_len
|
||||||
|
past_key_value.key_cache[self.layer_idx] = key_states
|
||||||
|
past_key_value.value_cache[self.layer_idx] = value_states
|
||||||
|
|
||||||
|
else:
|
||||||
|
if self.config.pretraining_tp > 1:
|
||||||
|
key_value_slicing = ((self.num_key_value_heads * self.head_dim) //
|
||||||
|
self.config.pretraining_tp)
|
||||||
|
query_slices = self.q_proj.weight.split((self.num_heads * self.head_dim)
|
||||||
|
// self.config.pretraining_tp, dim=0)
|
||||||
|
key_slices = self.k_proj.weight.split(key_value_slicing, dim=0)
|
||||||
|
value_slices = self.v_proj.weight.split(key_value_slicing, dim=0)
|
||||||
|
|
||||||
|
query_states = [F.linear(hidden_states, query_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
query_states = torch.cat(query_states, dim=-1)
|
||||||
|
|
||||||
|
key_states = [F.linear(hidden_states, key_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
key_states = torch.cat(key_states, dim=-1)
|
||||||
|
|
||||||
|
value_states = [F.linear(hidden_states, value_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)]
|
||||||
|
value_states = torch.cat(value_states, dim=-1)
|
||||||
|
else:
|
||||||
|
if fp16_fusion_check(self.q_proj, hidden_states, self.training) and \
|
||||||
|
hidden_size == 4096 and self.q_proj.out_features == self.k_proj.out_features:
|
||||||
|
# only use mm_qkv_out on pvc for llama-7b
|
||||||
|
if not hasattr(self, "qkv_proj_weight"):
|
||||||
|
self.qkv_proj_weight = torch.stack([self.q_proj.weight,
|
||||||
|
self.k_proj.weight,
|
||||||
|
self.v_proj.weight]).contiguous()
|
||||||
|
self.q_proj.weight.data = self.qkv_proj_weight[0, :, :]
|
||||||
|
self.k_proj.weight.data = self.qkv_proj_weight[1, :, :]
|
||||||
|
self.v_proj.weight.data = self.qkv_proj_weight[2, :, :]
|
||||||
|
torch.xpu.empty_cache()
|
||||||
|
query_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
key_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
value_states = torch.empty(bsz, q_len, self.qkv_proj_weight.shape[-1],
|
||||||
|
dtype=hidden_states.dtype, device=hidden_states.device)
|
||||||
|
torch.ops.torch_ipex.mm_qkv_out(
|
||||||
|
hidden_states, self.qkv_proj_weight, None,
|
||||||
|
query_states, key_states, value_states
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
if should_use_xetla_mm_qkv(self, device):
|
||||||
|
if not hasattr(self, "qkv_proj_qweight"):
|
||||||
|
self.qkv_proj_qweight = fuse_qkv_weight_xetla(self.q_proj,
|
||||||
|
self.k_proj,
|
||||||
|
self.v_proj,
|
||||||
|
self.q_proj.weight.qtype,)
|
||||||
|
import xe_linear
|
||||||
|
q_out_len = self.q_proj.out_len
|
||||||
|
k_out_len = self.k_proj.out_len
|
||||||
|
v_out_len = self.v_proj.out_len
|
||||||
|
qkv_states = xe_linear.mm_xetla(hidden_states,
|
||||||
|
self.qkv_proj_qweight,
|
||||||
|
self.q_proj.weight.qtype)
|
||||||
|
query_states = qkv_states[:, :, :q_out_len]
|
||||||
|
key_states = qkv_states[:, :, q_out_len:q_out_len + k_out_len]
|
||||||
|
value_states = qkv_states[:, :, q_out_len + k_out_len:]
|
||||||
|
else:
|
||||||
|
query_states = self.q_proj(hidden_states)
|
||||||
|
key_states = self.k_proj(hidden_states)
|
||||||
|
value_states = self.v_proj(hidden_states)
|
||||||
|
|
||||||
|
query_states = query_states.view(bsz, q_len,
|
||||||
|
self.num_heads, self.head_dim).transpose(1, 2)
|
||||||
|
key_states = key_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
value_states = value_states.view(bsz, q_len,
|
||||||
|
self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
||||||
|
|
||||||
|
kv_seq_len = key_states.shape[-2]
|
||||||
|
if past_key_value is not None:
|
||||||
|
if self.layer_idx is None:
|
||||||
|
invalidInputError(False,
|
||||||
|
"The cache structure has changed since version v4.36. "
|
||||||
|
f"If you are using {self.__class__.__name__} for "
|
||||||
|
"auto-regressive decodingwith k/v caching, please make sure "
|
||||||
|
"to initialize the attention class with a layer index.")
|
||||||
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
||||||
|
|
||||||
|
if use_fuse_rope:
|
||||||
|
rope_theta = self.rotary_emb.base
|
||||||
|
query_states, key_states = apply_rotary_pos_emb_no_cache_xpu(query_states,
|
||||||
|
key_states,
|
||||||
|
position_ids,
|
||||||
|
"llama",
|
||||||
|
rope_theta=rope_theta)
|
||||||
|
else:
|
||||||
|
if cache_position is not None:
|
||||||
|
# for transformers 4.38.0
|
||||||
|
cos, sin = self.rotary_emb(value_states, position_ids)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama2")
|
||||||
|
else:
|
||||||
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
||||||
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states,
|
||||||
|
cos, sin, position_ids, "llama")
|
||||||
|
|
||||||
|
if past_key_value is not None:
|
||||||
|
# update the number of seen tokens
|
||||||
|
if self.layer_idx == 0:
|
||||||
|
past_key_value.seen_tokens += key_states.shape[-2]
|
||||||
|
|
||||||
|
# reuse k, v, self_attention
|
||||||
|
# update `past_key_value` with `key_states` and `value_states` for layer `layer_idx`
|
||||||
|
if len(past_key_value.key_cache) <= self.layer_idx:
|
||||||
|
past_key_value.key_cache.append(key_states)
|
||||||
|
past_key_value.value_cache.append(value_states)
|
||||||
|
else:
|
||||||
|
cache_k = past_key_value.key_cache[self.layer_idx]
|
||||||
|
cache_v = past_key_value.value_cache[self.layer_idx]
|
||||||
|
|
||||||
|
if not enough_kv_room:
|
||||||
|
# allocate new
|
||||||
|
new_c_k, new_c_v = extend_kv_cache(bsz,
|
||||||
|
self.num_key_value_heads, # Support GQA
|
||||||
|
self.head_dim,
|
||||||
|
cache_k.size(2),
|
||||||
|
kv_seq_len + KV_CACHE_ALLOC_BLOCK_LENGTH,
|
||||||
|
dtype=cache_k.dtype,
|
||||||
|
device=device)
|
||||||
|
|
||||||
|
new_c_k[:] = cache_k
|
||||||
|
new_c_v[:] = cache_v
|
||||||
|
cache_k = new_c_k
|
||||||
|
cache_v = new_c_v
|
||||||
|
|
||||||
|
key_states, value_states = append_kv_cache(cache_k,
|
||||||
|
cache_v,
|
||||||
|
key_states,
|
||||||
|
value_states)
|
||||||
|
|
||||||
|
# update past_key_value
|
||||||
|
past_key_value.key_cache[self.layer_idx] = key_states
|
||||||
|
past_key_value.value_cache[self.layer_idx] = value_states
|
||||||
|
|
||||||
|
if cache_position is not None:
|
||||||
|
new_attention_mask = attention_mask[:, :, kv_seq_len - q_len:kv_seq_len, 0:kv_seq_len]
|
||||||
|
else:
|
||||||
|
new_attention_mask = attention_mask
|
||||||
|
|
||||||
|
if not self.training and not hidden_states.requires_grad and \
|
||||||
|
use_flash_attention(query_states, key_states, new_attention_mask):
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
# now only use flash attention for first token
|
||||||
|
attn_output = F.scaled_dot_product_attention(query_states.to(device, dtype=torch.float16),
|
||||||
|
key_states.to(device, dtype=torch.float16),
|
||||||
|
value_states.to(device, dtype=torch.float16),
|
||||||
|
is_causal=True)
|
||||||
|
attn_weights = None
|
||||||
|
elif not self.training and not hidden_states.requires_grad and \
|
||||||
|
self.layer_idx > 0 and \
|
||||||
|
use_sdp(q_len, key_states.shape[2], self.head_dim, query_states):
|
||||||
|
import xe_addons
|
||||||
|
attn_output = xe_addons.sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask)
|
||||||
|
attn_output = attn_output.view(query_states.shape)
|
||||||
|
attn_weights = None
|
||||||
|
else:
|
||||||
|
# repeat k/v heads if n_kv_heads < n_heads
|
||||||
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
||||||
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
||||||
|
# otherwise, use native attention
|
||||||
|
if query_states.device.type == "xpu":
|
||||||
|
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask, cache_position,
|
||||||
|
bsz, q_len, kv_seq_len,
|
||||||
|
self.head_dim, self.num_heads, output_attentions)
|
||||||
|
else:
|
||||||
|
# CPU path
|
||||||
|
if not output_attentions:
|
||||||
|
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
||||||
|
query_states,
|
||||||
|
key_states,
|
||||||
|
value_states,
|
||||||
|
attn_mask=new_attention_mask,
|
||||||
|
dropout_p=self.attention_dropout if self.training else 0.0,
|
||||||
|
# The q_len > 1 is necessary to match with
|
||||||
|
# AttentionMaskConverter.to_causal_4d that
|
||||||
|
# does not create a causal mask in case q_len == 1.
|
||||||
|
is_causal=self.is_causal and new_attention_mask is None and q_len > 1,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
attn_output, attn_weights = native_sdp(query_states, key_states, value_states,
|
||||||
|
new_attention_mask, cache_position,
|
||||||
|
bsz, q_len, kv_seq_len,
|
||||||
|
self.head_dim,
|
||||||
|
self.num_heads, output_attentions)
|
||||||
|
|
||||||
|
attn_output_size = (bsz, self.num_heads, q_len, self.head_dim)
|
||||||
|
if attn_output.size() != attn_output_size:
|
||||||
|
invalidInputError(False,
|
||||||
|
f"`attn_output` should be of size {attn_output_size},"
|
||||||
|
f" but is {attn_output.size()}")
|
||||||
|
|
||||||
|
attn_output = attn_output.transpose(1, 2).contiguous()
|
||||||
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
||||||
|
|
||||||
|
if self.config.pretraining_tp > 1:
|
||||||
|
attn_output = attn_output.split(self.hidden_size // self.config.pretraining_tp, dim=2)
|
||||||
|
o_proj_slices = self.o_proj.weight.split(self.hidden_size // self.config.pretraining_tp,
|
||||||
|
dim=1)
|
||||||
|
attn_output = sum([F.linear(attn_output[i], o_proj_slices[i])
|
||||||
|
for i in range(self.config.pretraining_tp)])
|
||||||
|
else:
|
||||||
|
attn_output = self.o_proj(attn_output)
|
||||||
|
|
||||||
|
if not output_attentions:
|
||||||
|
attn_weights = None
|
||||||
|
|
||||||
|
return attn_output.to(original_dtype), attn_weights, past_key_value
|
||||||
Loading…
Reference in a new issue