[Nano] Add a generalized how-to guide for accelerate PyTorch cv data process pipeline (#7125)
* Restyle blockquote elements in web * Add a generalized how-to section for preprocessing, including the data process accelerastion for PyTorch * Small fix * Update based on comments and small typo fixes * Small fixes
This commit is contained in:
		
							parent
							
								
									bfca337d09
								
							
						
					
					
						commit
						5e9ef7b553
					
				
					 6 changed files with 22 additions and 9 deletions
				
			
		| 
						 | 
				
			
			@ -107,3 +107,11 @@ footer.bd-footer{
 | 
			
		|||
#bd-toc-nav ul li {
 | 
			
		||||
    word-break: break-word;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* for quoteblocks, especially for the ones inside notebooks*/
 | 
			
		||||
blockquote {
 | 
			
		||||
    margin: 1.5em auto;
 | 
			
		||||
    box-shadow: 0 0.2rem 0.5rem var(--pst-color-shadow);
 | 
			
		||||
    border-color: var(--pst-color-primary);
 | 
			
		||||
    background-color: var(--pst-color-on-background);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -101,11 +101,11 @@ subtrees:
 | 
			
		|||
              title: "How-to Guides"
 | 
			
		||||
              subtrees:
 | 
			
		||||
                - entries:
 | 
			
		||||
                  - file: doc/Nano/Howto/Preprocessing/PyTorch/accelerate_pytorch_cv_data_pipeline
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_ipex
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_channels_last
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_bf16
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorch/convert_pytorch_training_torchnano
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/PyTorch/use_nano_decorator_pytorch_training
 | 
			
		||||
                  - file: doc/Nano/Howto/Training/TensorFlow/accelerate_tensorflow_training_multi_instance
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -0,0 +1,3 @@
 | 
			
		|||
{
 | 
			
		||||
    "path": "../../../../../../../../python/nano/tutorial/notebook/preprocessing/pytorch/accelerate_pytorch_cv_data_pipeline.ipynb"
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -1,4 +1,4 @@
 | 
			
		|||
# Choose the Number of Porcesses for Multi-Instance Training
 | 
			
		||||
# Choose the Number of Processes for Multi-Instance Training
 | 
			
		||||
 | 
			
		||||
BigDL-Nano supports multi-instance training on a server with multiple CPU cores or sockets. With Nano, you could launch a self-defined number of processes to perform data-parallel training. When choosing the number of processes, there are 3 empirical recommendations for better training performance:
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -35,10 +35,8 @@ Based on that, the number of processes np can be calculated as:
 | 
			
		|||
That is, empirically, we could set the number of processes to 2, 4 or 8 here for good training performance.
 | 
			
		||||
 | 
			
		||||
```eval_rst
 | 
			
		||||
.. card::
 | 
			
		||||
.. seealso::
 | 
			
		||||
 | 
			
		||||
    **Related Readings**
 | 
			
		||||
    ^^^
 | 
			
		||||
    * `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <../PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
 | 
			
		||||
    * `How to accelerate a TensorFlow Keras application on training workloads through multiple instances <../TensorFlow/accelerate_tensorflow_training_multi_instance.html>`_
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -1,3 +0,0 @@
 | 
			
		|||
{
 | 
			
		||||
    "path": "../../../../../../../../python/nano/tutorial/notebook/training/pytorch-lightning/pytorch_lightning_cv_data_pipeline.ipynb"
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -5,6 +5,14 @@ Nano How-to Guides
 | 
			
		|||
 | 
			
		||||
In Nano How-to Guides, you could expect to find multiple task-oriented, bite-sized, and executable examples. These examples will show you various tasks that BigDL-Nano could help you accomplish smoothly.
 | 
			
		||||
 | 
			
		||||
Preprocessing Optimization
 | 
			
		||||
---------------------------
 | 
			
		||||
 | 
			
		||||
PyTorch
 | 
			
		||||
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
			
		||||
* `How to accelerate a computer vision data processing pipeline <Preprocessing/PyTorch/accelerate_pytorch_cv_data_pipeline.html>`_
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
Training Optimization
 | 
			
		||||
-------------------------
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -14,7 +22,6 @@ PyTorch Lightning
 | 
			
		|||
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
 | 
			
		||||
* `How to use the channels last memory format in your PyTorch Lightning application for training <Training/PyTorchLightning/pytorch_lightning_training_channels_last.html>`_
 | 
			
		||||
* `How to conduct BFloat16 Mixed Precision training in your PyTorch Lightning application <Training/PyTorchLightning/pytorch_lightning_training_bf16.html>`_
 | 
			
		||||
* `How to accelerate a computer vision data processing pipeline <Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline.html>`_
 | 
			
		||||
 | 
			
		||||
PyTorch
 | 
			
		||||
~~~~~~~~~~~~~~~~~~~~~~~~~
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in a new issue