[Nano] Add a generalized how-to guide for accelerate PyTorch cv data process pipeline (#7125)
* Restyle blockquote elements in web * Add a generalized how-to section for preprocessing, including the data process accelerastion for PyTorch * Small fix * Update based on comments and small typo fixes * Small fixes
This commit is contained in:
parent
bfca337d09
commit
5e9ef7b553
6 changed files with 22 additions and 9 deletions
|
|
@ -107,3 +107,11 @@ footer.bd-footer{
|
||||||
#bd-toc-nav ul li {
|
#bd-toc-nav ul li {
|
||||||
word-break: break-word;
|
word-break: break-word;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/* for quoteblocks, especially for the ones inside notebooks*/
|
||||||
|
blockquote {
|
||||||
|
margin: 1.5em auto;
|
||||||
|
box-shadow: 0 0.2rem 0.5rem var(--pst-color-shadow);
|
||||||
|
border-color: var(--pst-color-primary);
|
||||||
|
background-color: var(--pst-color-on-background);
|
||||||
|
}
|
||||||
|
|
@ -101,11 +101,11 @@ subtrees:
|
||||||
title: "How-to Guides"
|
title: "How-to Guides"
|
||||||
subtrees:
|
subtrees:
|
||||||
- entries:
|
- entries:
|
||||||
|
- file: doc/Nano/Howto/Preprocessing/PyTorch/accelerate_pytorch_cv_data_pipeline
|
||||||
- file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_ipex
|
- file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_ipex
|
||||||
- file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance
|
- file: doc/Nano/Howto/Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance
|
||||||
- file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_channels_last
|
- file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_channels_last
|
||||||
- file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_bf16
|
- file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_training_bf16
|
||||||
- file: doc/Nano/Howto/Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline
|
|
||||||
- file: doc/Nano/Howto/Training/PyTorch/convert_pytorch_training_torchnano
|
- file: doc/Nano/Howto/Training/PyTorch/convert_pytorch_training_torchnano
|
||||||
- file: doc/Nano/Howto/Training/PyTorch/use_nano_decorator_pytorch_training
|
- file: doc/Nano/Howto/Training/PyTorch/use_nano_decorator_pytorch_training
|
||||||
- file: doc/Nano/Howto/Training/TensorFlow/accelerate_tensorflow_training_multi_instance
|
- file: doc/Nano/Howto/Training/TensorFlow/accelerate_tensorflow_training_multi_instance
|
||||||
|
|
|
||||||
|
|
@ -0,0 +1,3 @@
|
||||||
|
{
|
||||||
|
"path": "../../../../../../../../python/nano/tutorial/notebook/preprocessing/pytorch/accelerate_pytorch_cv_data_pipeline.ipynb"
|
||||||
|
}
|
||||||
|
|
@ -1,4 +1,4 @@
|
||||||
# Choose the Number of Porcesses for Multi-Instance Training
|
# Choose the Number of Processes for Multi-Instance Training
|
||||||
|
|
||||||
BigDL-Nano supports multi-instance training on a server with multiple CPU cores or sockets. With Nano, you could launch a self-defined number of processes to perform data-parallel training. When choosing the number of processes, there are 3 empirical recommendations for better training performance:
|
BigDL-Nano supports multi-instance training on a server with multiple CPU cores or sockets. With Nano, you could launch a self-defined number of processes to perform data-parallel training. When choosing the number of processes, there are 3 empirical recommendations for better training performance:
|
||||||
|
|
||||||
|
|
@ -35,10 +35,8 @@ Based on that, the number of processes np can be calculated as:
|
||||||
That is, empirically, we could set the number of processes to 2, 4 or 8 here for good training performance.
|
That is, empirically, we could set the number of processes to 2, 4 or 8 here for good training performance.
|
||||||
|
|
||||||
```eval_rst
|
```eval_rst
|
||||||
.. card::
|
.. seealso::
|
||||||
|
|
||||||
**Related Readings**
|
|
||||||
^^^
|
|
||||||
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <../PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
|
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <../PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
|
||||||
* `How to accelerate a TensorFlow Keras application on training workloads through multiple instances <../TensorFlow/accelerate_tensorflow_training_multi_instance.html>`_
|
* `How to accelerate a TensorFlow Keras application on training workloads through multiple instances <../TensorFlow/accelerate_tensorflow_training_multi_instance.html>`_
|
||||||
```
|
```
|
||||||
|
|
@ -1,3 +0,0 @@
|
||||||
{
|
|
||||||
"path": "../../../../../../../../python/nano/tutorial/notebook/training/pytorch-lightning/pytorch_lightning_cv_data_pipeline.ipynb"
|
|
||||||
}
|
|
||||||
|
|
@ -5,6 +5,14 @@ Nano How-to Guides
|
||||||
|
|
||||||
In Nano How-to Guides, you could expect to find multiple task-oriented, bite-sized, and executable examples. These examples will show you various tasks that BigDL-Nano could help you accomplish smoothly.
|
In Nano How-to Guides, you could expect to find multiple task-oriented, bite-sized, and executable examples. These examples will show you various tasks that BigDL-Nano could help you accomplish smoothly.
|
||||||
|
|
||||||
|
Preprocessing Optimization
|
||||||
|
---------------------------
|
||||||
|
|
||||||
|
PyTorch
|
||||||
|
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
* `How to accelerate a computer vision data processing pipeline <Preprocessing/PyTorch/accelerate_pytorch_cv_data_pipeline.html>`_
|
||||||
|
|
||||||
|
|
||||||
Training Optimization
|
Training Optimization
|
||||||
-------------------------
|
-------------------------
|
||||||
|
|
||||||
|
|
@ -14,7 +22,6 @@ PyTorch Lightning
|
||||||
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
|
* `How to accelerate a PyTorch Lightning application on training workloads through multiple instances <Training/PyTorchLightning/accelerate_pytorch_lightning_training_multi_instance.html>`_
|
||||||
* `How to use the channels last memory format in your PyTorch Lightning application for training <Training/PyTorchLightning/pytorch_lightning_training_channels_last.html>`_
|
* `How to use the channels last memory format in your PyTorch Lightning application for training <Training/PyTorchLightning/pytorch_lightning_training_channels_last.html>`_
|
||||||
* `How to conduct BFloat16 Mixed Precision training in your PyTorch Lightning application <Training/PyTorchLightning/pytorch_lightning_training_bf16.html>`_
|
* `How to conduct BFloat16 Mixed Precision training in your PyTorch Lightning application <Training/PyTorchLightning/pytorch_lightning_training_bf16.html>`_
|
||||||
* `How to accelerate a computer vision data processing pipeline <Training/PyTorchLightning/pytorch_lightning_cv_data_pipeline.html>`_
|
|
||||||
|
|
||||||
PyTorch
|
PyTorch
|
||||||
~~~~~~~~~~~~~~~~~~~~~~~~~
|
~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||||
|
|
|
||||||
Loading…
Reference in a new issue